

GFX4 / GFXTERMO4

4-ZONE MODULAR POWER CONTROLLER

CONFIGURATION AND PROGRAMMING MANUAL

Software version: 2.1x

code: 803970 - 07-2022 - ENGLISH

LIST OF ATTACHMENTS

This document supplements the following manuals:

- Instructions and warnings for GFXTERMO4
- Instructions and warnings for GFX4

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.

Installation and/or maintenance workers MUST read this manual and scrupulously follow all of the instructions in it and in its attachments. **GEFRAN** will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded.

The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without **GEFRAN's** authorization.

TABLE OF CONTENTS AND SUMMARIES

LIOT OF AFTAOFIMENTS	51
TABLE OF CONTENTS AN	ID SUMMARIES3
INTRODUCTION	4
FIELD OF USE	4
CHARACTERISTICS OF	PERSONNEL4
STRUCTURE OF THIS I	MANUAL5
INSTRUMENT ARCHITEC	ГURE6
SERIAL COMMUNICATI	ON (MODBUS)7
CONNECTION	9
INPUTS	11
MAIN INPUT	11
CT AUXILIARY INPUT (A	Ammeter)16
VOLTAGE VALUE ON TI	HE LOAD (Voltmeter)18
AUXILIARY ANALOG IN	PUT (LIN/TC)20
DIGITAL INPUTS	22
USING A FUNCTION AS	SOCIATED WITH DIGITAL23
INPUT AND VIA SERIAL	23
USING A FUNCTION OF 24	DIGITAL INPUT 1 TO ENABLE
AT SOFTWARE ON	24
AI ARMS	25
GENERIC ALARIVIS AL I	, AL2, AL3 and AL425
	, AL2, AL3 and AL425 k Alarm)30
LBA ALARM (Loop Brea	k Alarm)30
LBA ALARM (Loop Breath HB ALARM) (Heater Breath	k Alarm)
LBA ALARM (Loop BreathB ALARM (Heater BreathB ALARM SBR - ERR (prober Power Fault ALARMS (s	k Alarm)30
LBA ALARM (Loop BreathB ALARM (Heater BreathB ALARM SBR - ERR (probeth Power Fault ALARMS (NO_CURRENT)	k Alarm)
LBA ALARM (Loop BreathB ALARM (Heater BreathB ALARM SBR - ERR (probeth Power Fault ALARMS (NO_CURRENT)	k Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probe Power Fault ALARMS (NO_CURRENT)	k Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (S NO_CURRENT) Overheat alarm	k Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (NO_CURRENT)	Ak Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (SNO_CURRENT) Overheat alarm	Ak Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (NO_CURRENT) Overheat alarm OUTPUTS SETTINGS SETTING THE SETPOIN SETPOINT CONTROL	Ak Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (SNO_CURRENT) Overheat alarm	K Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (IND_CURRENT) Overheat alarm	k Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (SNO_CURRENT) Overheat alarm	k Alarm) 30 ak Alarm) 31 in short or connection error) 33 SSR_SHORT, NO_VOLTAGE, SSR_OPEN and 34 36
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (SNO_CURRENT) Overheat alarm	30 ak Alarm)
LBA ALARM (Loop Breath	Ak Alarm)
LBA ALARM (Loop Bread HB ALARM (Heater Bread ALARM SBR - ERR (probed Power Fault ALARMS (SNO_CURRENT) Overheat alarm	Ak Alarm)

SOFTSTART	55
START MODE	55
SOFTWARE SHUTDOWN	56
HOT RUNNERS CONTROL	57
FAULT ACTION POWER	57
POWER ALARM	57
SOFTSTART FOR PREHEATING	59
HEATING OUTPUT (Fast cycle)	60
POWER CONTROL	60
SSR CONTROL MODES	60
VIRTUAL INSTRUMENT CONTROL	63
HW/SW INFORMATION	64
INSTRUMENT CONFIGURATION SHEET	67
PROGRAMMABLE PARAMETERS	67

INTRODUCTION

The modular power controller described in this manual and shown on the cover is a separate unit for the independent control of a maximum of 4 temperature zones. It offers high applicative flexibility thanks to the extended configurability and programmability of its parameters.

Instrument configuration and programming must be performed with a GFX-OP operator terminal or a PC connected in USB/232/485, with specific software (not supplied).

Since it is impossible to foresee all of the installations and environments in which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

GEFRAN declines all liability if rules for correct installation, configuration, and/or programming are disregarded, as well as all liability for systems upline and/or downline of the instrument.

FIELD OF USE

The modular power controller is the ideal solution for applications on extrusion lines, in plastic injection presses, thermoforming machines, packaging and packing machines and, in general, in traditional temperature control applications. Nevertheless, because it is highly programmable, the controller can also be used for other applications provided they are compatible with the instrument's technical data.

Although the instrument's flexibility allows it to be used in a variety of applications, the <u>field of use</u> must always conform to the limits specified in the technical data supplied.

GEFRAN declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

Prohibited use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied:
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation.

CHARACTERISTICS OF PERSONNEL

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel.

It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.

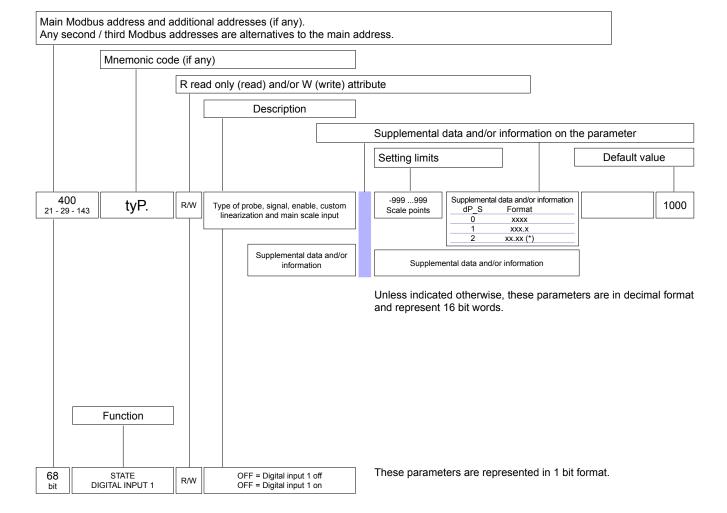
The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions.

Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers.

STRUCTURE OF THIS MANUAL

This manual was originally written in ITALIAN. Therefore, in case of inconsistencies or doubts, request the original manual or explanations from GEFRAN.

The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.


For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate chapters. Each chapter has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;
- the second section presents the parameters needed for the controller's basic applications, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;
- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller: this section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.

Some sections may contain a functional diagram showing interaction among the parameters described;

- terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).

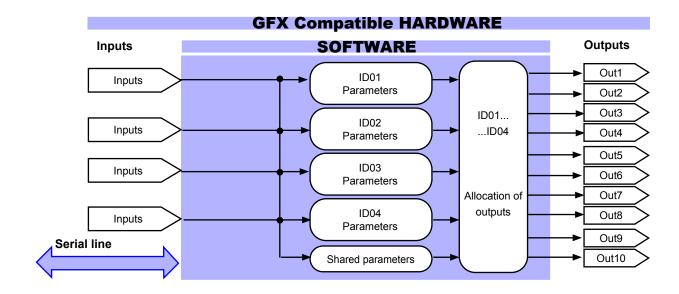
In each section, the programming parameters are shown as follows:

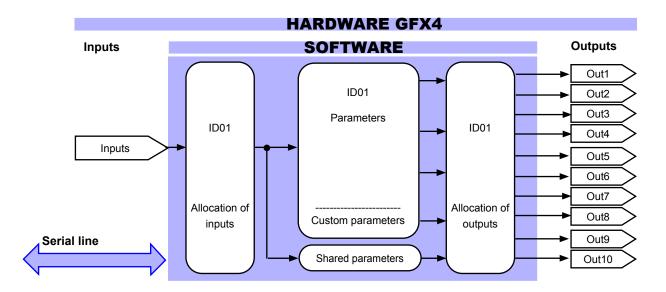
INSTRUMENT ARCHITECTURE

The modular power controller's flexibility permits replacement of previous-version instruments without changing the control software in use.

Based on the chosen work mode (see MODBUS SERIAL COMMUNICATION), you can use the instrument in 2 different modes:

- GFX compatible mode: as if there were 4 separate instruments (recommended for retrofitting projects and/or replacement of damaged instruments);
- **GFX4 mode**: as a single instrument with the same functions as 4 separate instruments, but with possibility of interaction among the various parameters, inputs and outputs (recommended for new projects).


New shared parameters, identified with Modbus addresses higher than 600, are accessible for both modes and permit more advanced functions such as:



In addition to having a CUSTOM group of parameters for dynamic addressing, GFX4 mode lets you use a single communication network node instead of 4 nodes as in GFX compatible mode.

When programming, keep in mind that the addresses (parameters) described in this manual exist 4 times, specified by address node (ID).

SERIAL COMMUNICATION (MODBUS)

There are two Modbus addressing modes for variables and configuration parameters:

- GFX compatible
- GFX4

The modes are selected with dip-switch-7.

All the parameters of formulation are saved in internal storage EEPROM (not flown them), of which a maximum of 100'000 cycles of cancellation is guaranteed/writing. In order to avoid the express deterioration of the same one, when the only necessary writing is advised some. They make exception the parameters local setpoint _SP (address Modbus 138) and MANUAL_POWER (address Modbus 252), whose memorization in EEPROM can be disabled by means of formulation of the SP.r parameter From 2.50 version the EEP.E parameters has been added to disable EEPROM memory for all parameters. When the memory is disabled, the last modified value with enabled memory remains.

901	EEP.E	R/W	EEPROM saving	<u>EEPI</u>	ROM saving table	0	
				0 1	Enables Disabled		

GFX-compatible mode (dip-switch-7 =ON)

This lets you uses supervision programs created for Geflex modules.

Memory is organized in 4 groups:

- Zone 1
- Zone 2
- Zone 3
- Zone 4

In each zone, the variables and parameters have the same address as a Geflex instrument; the value (Cod) set on the rotary switches corresponds to that of Zone 1; the values in the other zones are sequential. Shared word parameters for the GFX4 instrument have addresses starting at 600.

Shared bit parameters have addresses high than 80.

Examples:

if the rotary switches have value 14, node 14 addresses Zone 1, node 15 Zone 2, node 16 Zone 3, node 17 Zone 4. The process variable (PV) for Zone 1 has address Cod 0, the PV for Zone 2 has address Cod+1, 0, etc... Parameter out.5, which defines the function of output OUT 5 on the GFX4, has address Cod 611.

Serial communication time constraints in Modbus RTU

The following time constraints must be complied with in order to allow correct serial data exchange with the device:

Reading Word/Register parameters: Reading N consecutive parameters, with N from 1 to 16, requires a time of almost 50 ms. In this case the following read and write Modbus command, to the same node, must be sent after this interval time.

Writing Word/Register parameters: Writing N consecutive parameters, with N ranging from 1 to 16, if all values (maximum 16) on the device are updated, will take a time of:50ms + N x 80ms(*) with N from 1 to 16.

The times reported refer to the case in which the Baudrate of the serial line (parameter bAu Modbus address 45) is 19200.

(*) If STATUS_W parameters (Modbus address 305) are included in the write request and their value is different from the one currently present in the slave, the time required to write each one will be 240ms (instead of 80ms).

GFX4 mode (dip-switch-7=OFF)

This lets you optimize the efficiency of serial communication by integrating 4 zones in the GFX4. Memory is organized in 5 groups: 4 already in GFX-compatible mode, plus one group defined as custom:

- Custom (additional memory map for dynamic addresses)
- Zone 1
- Zone 2
- Zone 3
- Zone 4

The custom group contains variables and parameters for a maximum of 120 words. The meaning of these words can be changed.

There is a single value (Cod) set on the rotary switches; i.e., one for each GFX4 instrument. To access the data in each zone, simply add an offset to the address (+1024 for Zone 1, +2048 for Zone 2, +4096 for Zone 3, +8192 for Zone 4).

Words in the custom group have addresses 0,...,119. The variables and parameters are defined by default. At addresses 200,...,319 we have words containing the value of the address of the corresponding variables or parameters. These addresses can be changed by the user, offering the ability to read/write data with multi-word messages structured according to various supervision requirements.

Protection of Maps 1-2

You have to write the value 99 on addresses 600 and 601 to enable change of the custom group (addresses 200... 31). This value is reset at each switch-on.

Examples:

you can access the PV variable in Zone 1 with address Cod, 0+1024 or address Cod, 0 custom variable 1 (address Cod, 200 has value 1024):

you can access the PV variable in Zone 2 with address Cod, 0+ 2048 or address Cod, 29 custom variable 30 (address Cod, 229 has value 2048);

if you want to read the 4 process variables in sequence at the first 4 addresses, set Cod, 200 = 1024, Cod.201 = 2048, Cod,202 = 4096, Cod,203 = 8192.

CONNECTION

Each GFX4 has an optically isolated serial port RS485 (PORT 1) with standard Modbus protocol via connectors S1 and S2 (type RJ10).

Connector S3 is suitable for direct connection to a Geflex slave module or to a GFX-OP operator terminal. Remember that the maximum communication speed of these devices is 19200 baud.

You can insert a serial interface (PORT 2). There are various models based on the field bus required: Modbus, Profibus DP, CANopen, DeviceNet and Ethernet.

This communication port (PORT 2) has the same Cod address as PORT 1.

The parameters for PORT 2 are bAu.2 (select baud-rate) and Par.2 (select parity).

The Cod parameter (read only) shows the value of the node address, settable from 00 to 99 with the 2 rotary switches; the hexadecimal settings are reserved.

A parameter can be read or written from both communication ports (PORT 1 and PORT 2).

 Changing the bAu (select baud-rate) and/or PAr (select parity) parameters may cause communication failure.

To set the bAu and PAr parameters, you have to run the Autobaud procedure described in the "Instruction and warnings" manual. Run the Autonode procedure for the Slave node parameter. For the Master, simply switch off and then back on.

Installation of the "MODBUS" serial network

A network typically has a Master that "manages" communication by means of "commands" and Slaves that interpret these commands.

GFX4s are considered Slaves to the network master, which is usually a supervision terminal or a PLC.

They are positively identified by means of a node address (ID) set on the rotary switches (tens + ones).

GFX4s have a ModBus serial (Serial 1) and optional Fieldbus (Serial 2) serial (see order code) with one of the following protocols: ModBus, Profibus, CANopen, DeviceNet, Ethernet.

The following procedures are indispensable for the Modbus protocol.

For the remaining protocols, see the specific Geflex Profibus, Geflex CANopen, Geflex DeviceNet and Geflex Ethernet manuals. GFX4 modules have the following default settings:

- node address = 0 (0 + 0)
- speed Serial 1 = 19200 bit/s
- parity Serial 1 = none
- speed Serial 2 = 19200 bit/s
- parity Serial 2 = none

You can install a maximum of 99 GFX4 modules in a serial network, with node address selectable from "01" to "99" in standard mode, or create a mixed GFX4 / Geflex network in Geflex compatible mode in which each GFX4 identifies 4 zones with sequential node address starting from the code set on the rotary switches.

In short, the valid rotary switch settings (tens + ones) are:

- (0 +0) = Autobaud Serial 1
- (B +0) = Autobaud Serial 2
- (A + 0) = Autonode Serial 1 for Geflex slaves connected to GFX4.

46	Cod	R	Instrument identification code	1 9	99			
45	bAu	R/W	Select Baudrate - Serial 1	<u> </u>	Baudrate	<u>table</u>		4
626	bAu.2	R/W	Select Baudrate - Serial 2	0 1	1200 b	oit/s		4
				2 3 4 5 6 7	4800 k 9600 k 19200 38400 57600 11520	bit/s bit/s bit/s bit/s		

47	PAr	R/W	Select parity - Serial 1		Parity table	0
627	PAr.2	R/W	Select parity - Serial 2	0	No parity Odd	0
				2	Even	

Communication error

If Modbus communication between GFX4 and Master node goes into timeout (settable in C.E.t parameter), you can force an output power value (C.E.P parameter of each zone) and transmit the alarm state to a relay output (rL.x parameters).

890	C.E.t	R/W	Timeout for communication error	0 121 sec.	Value 0 disables the function	0
891	C.E.m	R/W	Mode for communication error		Mode table for communication error	0
				1 La pot +16 only fo	red power is not changed enza erogata viene forzata al valore C.E.P r C.M.E -1 in MANUAL_POWER at the restart of the unication (only if in manual mode)	
892	C.E.P	R/W	Output power when communication error is active	-100.0100.0%		0,0

INPUTS

MAIN INPUT

The modular power controller has 4 main inputs to control 4 temperature zones, to which you can connect temperature sensors (thermocouples and RTD), linear sensors or custom sensors to acquire process variable (PV) values.

To configure, you always have to define the type of probe or sensor (tYP), the maximum and minimum scale limit (Hi.S – Lo.S) for the process variable value, and the position of the <u>decimal point</u> (dP.S).

If the sensor is a thermocouple or resistance thermometer, the minimum and maximum limits can be defined on the specific scale of the sensor. These limits define the width of the proportional control band and the range of values settable for the setpoint and alarm setpoints.

There is a parameter to correct the offset of the input signal (oF.S): the set value is algebraically added to the read of the process variable.

You can read the state of the main input (Err) in which an input error is reported: when the <u>process variable</u> goes beyond the upper or lower scale limit, it assumes the value of the limit and the corresponding state reports the error condition: Lo = process variable < minimum scale limit

Hi = process variable > maximum scale limit

Err = Pt100 in short circuit and input value below minimum limit,

4...20mA transmitter interrupted or not powered

Sbr = Tc probe interrupted or input value above maximum limit

If noise on the main input causes instability of the acquired value, you can reduce its effect by setting a low pass digital filter (Flt). The default setting of 0.1sec is usually sufficient.

You can also use a *digital filter* (Fld) to increase the apparent stability of the process variable PV; the filter introduces a hysteresis on its value: if the input variation remains within the set value, the PV value is considered unchanged.

In the case of a Modbus TCP connection, the parameter ENABLE_DISABLE_BACKGROUND_TASK must be set to 0 at Modbus address 65527 to make active the control on Dialog timeout.

Settings necessary to use the custom map

- 1. Set the internal variable of the card **Enable serial background** to address 65527 (0xfff7) to value 0 (default value for this parameter is 1)
- 2. Set the internal variable of the **UnLock Custom Map** tab to address 65529 (0xfff9) to value 1 (the default value for this parameter is 1)

Settings required for using the second modbus tcp channel

Set the internal variable of the Enable tab according to the TcpModbus socket at 65528 (0xfff8) to the value 1 (the default value for this parameter is 0)

Settings required to reset the card to the default values

- 1. Turn on the instrument (if OFF)
- 2. Place rotary X10 = C and rotary X1 = 0
- 3. Wait for more than 10 seconds
- 4. Turn off the instrument
- 5. Reposition the rotary to the desired working value between 1 and 99
- 6. Turn the instrument on

Parameter name	Address	Access Type	Description	Default
ENABLE_DISABLE_BACKGROUND_TASK	65527	RW	Enable\Disable Background task ⁽¹⁾ : 1: Backgroud task ENABLED 0: Backgroud task DISABLED	1
ENABLE_DISABLE_SECOND_SOCKET	65528	RW	Enable\Disable second socket Modbus TCP 0: Second socket Modbus TCP DISABLED 1: Second socket Modbus TCP ENABLED	0
LOCK_UNLOCK_DATA_AREA_ACCESS	65529	RW	Lock\Unlock objects access 1: Free access to all modbus object parameters. 0: Access limited ONLY to Custom Map Data Area	1

Note:

Background task must be used ONLY when compatible mode is setting on GFW, GFX4\GFXTERMO4, GFX4-IR.

Probes and sensors

400

tyP.

R/W

Probe type, signal, enable, custom linearization and main input scale

Calibrate the UCA inputs by means of the GFX-OP terminal.

The procedure is described in the GFX-OP manual.

Maximum error of non linearity for thermocouples (Tc), resistance thermometer (PT100)

Tc type: error < 0.27% f.s. (t > 300°C)
For other ranges: error < 0.5% f.s. (t > 300°C)
For other ranges: error < 0.5% f.s. error < 0.2% f.s. (t > -150°C)

And inserting a custom linearization E, N, L

error <0.2% f.s. range 44...1800°C; error < 0.5% f.s. (t > 300°C) range 44...1800 C, error (5...(>300°C) range -200...400; error (5...(>300°C) For other ranges; error <0.2% f.s. (for t > -100°C) U

error < 0.2% f.s. (t > 300°C) error < 0.2% f.s. (t > 200°C) error < 0.2% f.s. range 0...2300; For other ranges; error < 0.5% f.s.

JPT100 and PT100 error < 0.2% f.s.

The error is calculated as deviation from theoretical value with % reference to the full-scale value expressed in degrees Celsius (°C).

dP.S 403 R/W Decimal point position for input scale

Specifies the number of decimal figures used to represent the input signal value: for example, 875.4 (°C) with dP.S = 1.

0 Table of probes and sensors

TC SENSOR

	Type of probe	Scale	Without dec. point	With dec. point
0	TC J	°C	0/1000	0.0/999.9
1	TC J	°F	32/1832	32.0/999.9
2	TC K	°C	0/1300	0.0/999.9
3	TC K	°F	32/2372	32.0/999.9
4	TC R	°C	0/1750	0.0/999.9
5	TC R	°F	32/3182	32.0/999.9
6	TC S	°C	0/1750	0.0/999.9
7	TC S	°F	32/3182	32.0/999.9
8	TC T	°C	-200/400	-199.9/400.0
9	TC T	°F	-328/752	-199.9/752.0
28	TC	custom	custom	custom
29	TC	custom	custom	custom

SENSOR: RTD 3-wires

	Type of probe	Scale	Without dec. point	With dec. point
30	PT100	°C	-200/850	-199.9/850.0
31	PT100	°F	-328/1562	-199.9/999.9
32	JPT100	°C	-200/600	-199.9/600.0
33	JPT100	°F	-328/1112	-199.9/999.9

SENSOR: 60mV voltage

	Type of probe	Scale	Without dec. point	With dec. point
34	060 mV	Linear	-1999/9999	-199.9/999.9
35	060 mV	Linear	Custome linearization	Custome linearization
36	1260 mV	Linear	-1999/9999	-199.9/999.9
37	1260 mV	Linear	Custome linearization	Custome linearization

SENSOR: 20mA current

	Type of probe	Scale	Without dec. point	With dec. point
38	020 mA	Linear	-1999/9999	-199.9/999.9
39	020 mA	Linear	Custome linearization	Custome linearization
40	420 mA	Linear	-1999/9999	-199.9/999.9
41	420 mA	Linear	Custome linearization	linear. custom

SENSOR: 1V voltage

-				
	Type of probe	Scale	Without dec. point	With dec. point
42	01 V	lineare	-1999/9999	-199.9/999.9
43	01 V	lineare	linear. custom	linear. custom
44	200 mv1 V	lineare	-1999/9999	-199.9/999.9
45	200 mv1 V	lineare	linear. custom	Custome linearization

SENSOR: Custom

	Type of probe	Scale	Without dec. point	With dec. point
46	Cust. 20mA	-	-1999/9999	-199.9/999.9
47	Cust. 20mA	-	Custome linearization	Custome linearization
48	Cust. 60mV	-	-1999/9999	-199.9/999.9
49	Cust. 60mV	-	Custome linearization	Custome linearization
50	PT100-JPT	-	custom	custom
99	Input off			

0

0

Decimal point table

(*) Not available for TC, RTD probes

Format XXXX XXX. xx.xx (* x.xxx (*)

Scale limits

401 Lo.S R/W Minimum scale limit of main input

Engineering value associated to minimum level of the signal generated by the sensor connected to the input: for example 0 (°C) with type K thermocouple

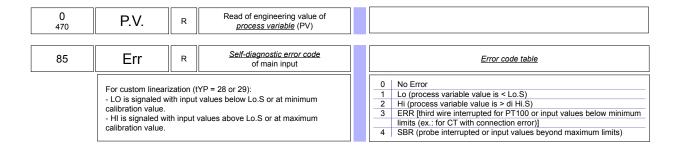
402 Hi.S R/W Maximum scale limit of main input

Engineering value associated to maximum level of the signal generated by the sensor connected to the input: for example 1300 (°C) with type K thermocouple.

min...max scale of input selected in tyP

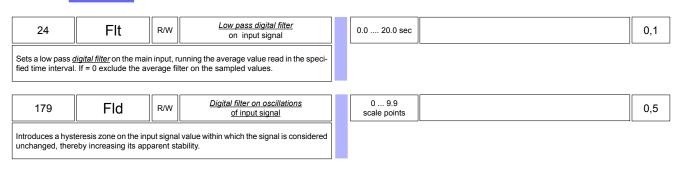
in tyP

1000 min...max scale of input selected


Setting the offset

519 oFS. R/W Offset correction for main input

Lets you set a value in scale points that is algebraically added to the value measured by the input sensor


-999...999 0 scale points

Read state

ADVANCED SETTINGS

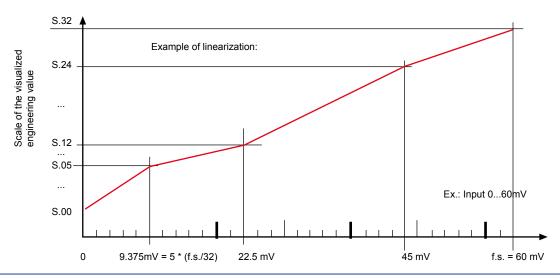
Input filters

Linearization of input signal

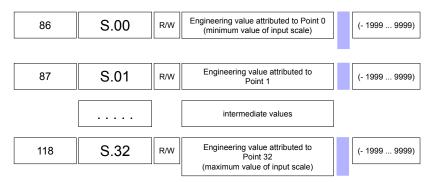
The modular power controller lets you set a custom linearization of the signal acquired by the main input for signals coming from sensors and for signals coming from custom thermocouples.

Linearization is performed with 33 values (S00 ... S32: 32 segments).

S33, S34, S35 are an additional 3 values to be inserted in case of linearization with custom CT.


- Signals from sensors

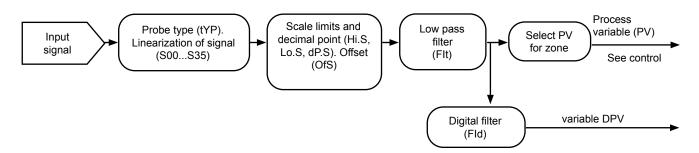
For signals coming from sensors, linearization is done by dividing the input scale into 32 zones of equal dV amplitude, where: dV = (full-scale value – start of scale value) / 32


Point 0 (origin) corresponds to the engineering value attributed to the minimum value of the input signal. Subsequent points correspond to the engineering values attributed to input values equal to:

Input value (k) = Minimum input value + k * dV

where k is the order number of the linearization point

The engineering values calculated in this way by the user can be set by means of the following parameters.


For correct signaling of error state (Lo, Hi), the value set in S.00 must coincide with limit Lo.S and the value set in S.32 with limit Hi.S.

- Signals coming from custom thermocouples

An alternate linearization is available only for sensors consisting of custom thermocouples, created by defining engineering values at three measurement scale points settable with the following parameters:

293	S.33	R/W	Engineering value attributed to minimum value of the input scale.		mV start of scale (- 19,99 99,99)	
294	S.34	R/W	Engineering value attributed to maximum value of the input scale.		mV full scale ((S.33+1) 99,99)	
295	S.35	R/W	Engineering value attributed to input signal corresponding to 50°C.		mV at 50° C (- 1,999 9,999)	

FUNCTIONAL DIAGRAM

N.B. The decimal point does not change the contents of the PV, but only permits its correct interpretation.

Ex.: if dP.S = 1 and PV = 300, the engineering value in °C is 30.0.

CT AUXILIARY INPUT (Ammeter)

Optional input used to monitor current delivered to the load, both single phase and 3-phase, with automatic recognition of the internal ammeter transformer.

Models with 4 TA (GFX4-x-x-2-x-x and GFX4-x-x-4-x-x) let you continuously acquire the current values circulating in the load with sampling interval of 60ms. The current value can be read in variable I.tA1 of each zone. If zone 1 has a 3-phase load, variables I.tA1, I.tA2 and I.tA3 in the first zone have the current value in line 1, line 2 and line 3, respectively.

You can also read the maximum current value corresponding to running state (ON) in variable I1on. This value is reset when no power is requested. In 3-phase load configuration, variables I1on, I2on and I3on in the first zone contain the current value in line 1, line 2 and line 3, respectively.

Models with 1 CT (GFX4-x-x-1-x-x and GFX4-x-x-3-x-x) sample the load current value at a programmable time interval (parameter dG.t). Therefore, you can use the best sampling time for the application being run and, especially, for load type, since activation of the scan to identify faults on the load with fast systems and short cycle times may be critical for stable temperature control.

How does the periodic scan work? First, power to all 4 zones is interrupted (control outputs = OFF), then, in succession, if the power requested exceeds a minimum settable value (dG.P), the individual zones activate to acquire the current value. If there is current with the 4 zones OFF, the device is in SSR SHORT condition, but the faulty zone is not identified. If no current is detected with the zone ON (control output = ON), the device is in NO CURRENT condition, corresponding to a possible interrupted load or SSR open or no line voltage or blown fuse. If current flows, the sampled value is saved in variable I.tA1.

The 4 ammeter inputs are IN9, IN10, IN11, IN12, and the current value is found in variable ItA1 for zones 1, 2, 3, 4, respectively.

If diagnostics identifies a fault on the load, the red ER LED starts to flash in sync with yellow LED O1 or O2 or O3 or O4 for the faulty zone.

The condition POWER_FAULT in OR with the HB alarm can be assigned to an alarm or can be identified in the state of a bit in the STATUS_INSTRUMENT, STATUS_INSTRUMENT_1, and STATUS_INSTRUMENT_2 variables.

In STATUS INSTRUMENT 3, you can identify the condition that activated the POWER FAULT alarm.

The POWER_FAULT diagnostics is configurable with parameter hd.2, with which you can also enable only one of its parts.

With models that have 4 CTs, you can diagnose the following single conditions:

- SSR SHORT: SSR module in short circuit;
- NO VOLTAGE: no line voltage or fuse blown or load interrupted;
- SSR OPEN: SSR module open ;
- HB: load partially interrupted.

With models that have 1 CT, you can diagnose the following conditions:

- SSR SHORT: SSR module in short circuit;
- NO CURRENT: load interrupted or SSR open or no line voltage or fuse blown;
- HB: load partially interrupted.

For a zone with single-phase load, the default value of the maximum limit or full scale of the current transformer (H.tA1) depends on the model, and equals 20.0A (30 kW model), 40.0A (60 kW model) or 60.0A (80 kW model). Parameters for correction of offset (o.tA1) and for the digital filter (Ft.tA) refer to the ammeter input.

If zone 1 has a 3-phase load, the following parameters are significant:

- I.tA1, I.tA2 and I.tA3: ammeter value on line L1, L2 and L3, respectively;
- I.AF1, I.AF2 and I.AF3; filtered ammeter value (see Ft.tA) on line L1, L2 and L3;
- I1on, I2on and I3on: current with control O1 on (ON) on line L1, L2 and L3;
- H.tA1, H.tA2 and H.tA3: maximum limit or full scale of current transformer on line L1, L2 and L3;
- o.tA1, o.tA2 and o.tA3 = offset correction for ammeter input on line L1, L2 and L3;
- Ft.tA = digital filter for ammeter input.

S	Scale limits									
_							30kW	60kW	80kW	
405	H.tA1	R/W	Maximum scale limit of current transformer CT (phase 1)		0.0 999.9		20,0	40,0	60,0	
413	H.tA2	R/W	Maximum scale limit of current		0.0 999.9	With 3-phase load	20,0	40,0	60,0	
413	11.0~2	IVVV	transformer CT (phase 2)		0.0 999.9	With 3-phase load	20,0	40,0	00,0	
414	H.tA3	R/W	Maximum scale limit of current transformer CT (phase 3)		0.0 999.9	With 3-phase load	20,0	40,0	60,0	

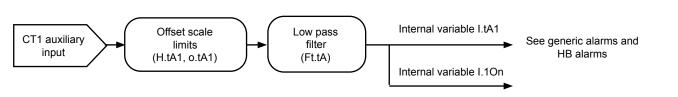
Setting the offset

220	o.tA1	R/W	Offset correction CT input (phase 1)		-99.999.9 scale points		0,0
415	o.tA2	R/W	Offset correction CT input (phase 2)		-99.999.9 scale points	With 3-phase load	0,0
416	o.tA3	R/W	Offset correction CT input (phase 3)		-99.999.9 scale points	With 3-phase load	0,0

Read state

227 473 - 139	I.tA1	R	Instantaneous CT input value (phase 1)		Not significant if there is only 1 CT (refers to I.10n)		
490	I.tA2	R	Instantaneous CT input value (phase 2)		With 3-PHASE LOAD- Not significant if there is only 1 CT (refers to 1.20n)		
491	91 I.tA3 F		Instantaneous CT input value (phase 3)		With 3-PHASE LOAD– Not significant if there is only 1 CT (refers to I.3On)		
468	I.1on	R	CT input value with output on (phase 1)				
498	498 I.2on R		CT input value with output on (phase 2)				
499	I.3on	R	CT input value with output on (phase 3)				

ADVANCED SETTINGS


Input filter

219	Ft.tA1	R/W	CT input digital filter (phases 1, 2 and 3)			0.0
			, running the average of values read in the erage filter on sampled values.			

Input sampling interval

SCHEMA FUNZIONALE

VOLTAGE VALUE ON THE LOAD (Voltmeter)

The voltage read value is present for each zone only on models with 4 CTs (GFX4-x-x-2-x-x and GFX4-x-x-4-x-x), and is used to monitor voltage applied to a single-phase or 3-phase load, with automatic recognition of the internal voltmeter transformer.

The value of the voltage applied to the load is saved in variable I.tV1. For each phase, the voltage value is updated while the control output is inactive, otherwise, the value is frozen at the last valid read.

The voltmeter function is significant with:

- 4 independent zones with 4 single-phase loads;
- 1 zone with 3-phase star load with neutral + 1 single-phase zone;
- 1 zone with 3-phase load with open triangle + 1 single-phase zone.

For a zone with single-phase load, the default value of the maximum limit or full scale of the volumetric value (H.tV1) is 530V, and the input is linear on the interval 90...530V. The parameters for correction of offset (o.tV1) and the digital filter (Ft. tV) refer to the voltmeter input.

If zone 1 has a 3-phase load, the following parameters are not significant:

- I.tV1, I.tV2 and I.tV3: voltmeter value on line L1, L2 and L3, respectively;
- I.VF1, I.VF2 and I.VF3: filtered voltmeter value (see Ft.tV) on line L1, L2 and L3;
- H.tV1, H.tV2 and H.tV3: maximum limit or full scale of voltage transformer on line L1, L2 and L3;
- o.tV1, o.tV2 and o.tV3 = offset correction for voltmeter input on line L1, L2 and L3;
- Ft.tV = digital filter for voltmeter input.

ATTENTION: for load voltages below 90VAC, the voltage read on the load and possible alarms have no value.

Scale limits

410	HS.tV1	R/W	Maximum scale limit of voltage transformer TV input (phase 1)		0.0 999.9		530,0
417	H.tV2	R/W	Maximum scale limit of voltage transformer TV input (phase 2)		0.0 999.9	With 3-phase load	530,0
418	H.tV3	R/W	Maximum scale limit of voltage transformer TV input (phase 3)		0.0 999.9	With 3-phase load	530,0

Setting the offset

411	oF.tV1	R/W	Offset correction for TV input (phase 1)		-99.999.9 Scale points		0,0
419	o.tV2	R/W	Offset correction for TV input (phase 2)		-99.999.9 Scale points	With 3-phase load	0,0
420	o.tV3	R/W	Offset correction for TV input (phase 3)		-99.999.9 Scale points	With 3-phase load	0,0

Read state


232 485	I.tV1	R	Value of voltmeter input (phase 1)	
492	I.tV2	R	Value of voltmeter input (phase 2)	With 3-phase load
493	I.tV3	R	Value of voltmeter input (phase 3)	With 3-phase load

ADVANCED SETTINGS

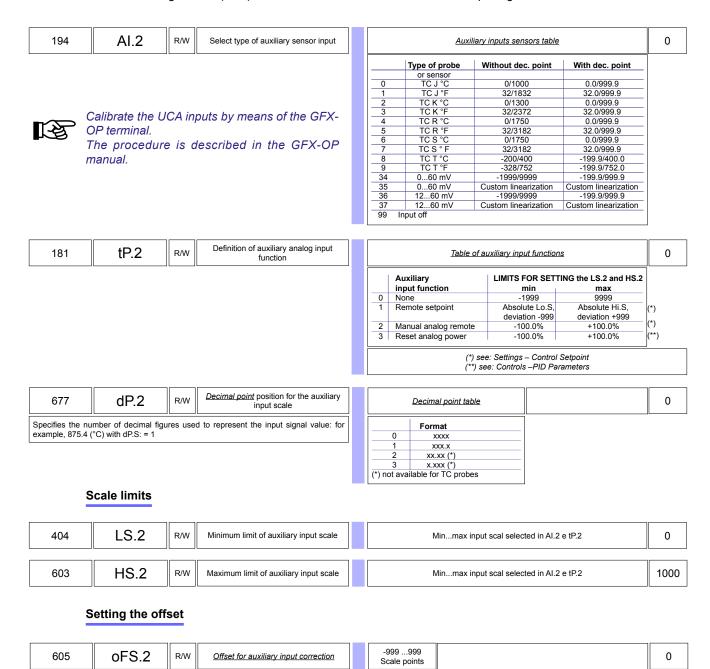
Input filter

FUNCTIONAL DIAGRAM

AUXILIARY ANALOG INPUT (LIN/TC)

The GFX4 has 4 inputs defined as auxiliary (IN5 for zone 1, IN6 for zone 2, IN7 for zone 3, IN8 for zone 4) to which TC or linear temperature sensors can be connected.

The presence of these inputs is optional and, for models GFX4-x-x-3-x-x/GFX4-x-x-4-x-x, is defined by the order code.


The input value, saved in variable In.2, can be read and used to activate the alarm signals assigned to it.

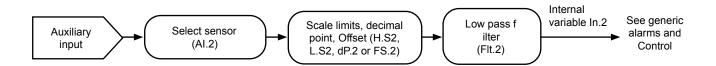
When an auxiliary input is present, you have to define the following parameters:

- sensor type (AI.2);
- its function (tP.2);
- decimal point position (dP.2);
- scale limits (HS.2 LS.2);
- offset correction value (oFS.2).

If the sensor is a thermocouple, the minimum and maximum limits can be defined in the specific scale of the sensor used. The range of values settable for alarm setpoints depends on these limits.

There is also a digital filter (Flt.2) that can be used to reduce noise on the input signal.

Read state


602	ln.2	R	Value of auxiliary input	
606	Er.2	R	Error code for self-diagnosis of auxiliary input	Error code table
				No error Lo (value of process variable is < Lo.S) Hi (value of process variable is > Hi.S) ERR [third wire interrupted for PT100 or input values below minimum limits (ex.: for TC with connection error)] 4 SBR (probe interrupted or input values beyond maximum limits)

ADVANCED SETTINGS

Input filter

FUNCTIONAL DIAGRAM

DIGITAL INPUTS

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

140	diG.	R/W	Digital input function		Digital input functions table	0	<u>Activation</u>
618	dIG.2	R/W	Digital input 2 function	0 1 2 3 4 5 6 6 7 8 9 11 12 12	MAN/AUTO controller LOC / REM HOLD AL1,, AL4 alarms memory reset SP1 / SP2 selection Software on/off None START / STOP Selftuning START / STOP Autotuning Dewer_Fault alarms memory reset LBA alarm reset AL1AL4 and Power_Fault alarms reset memory	0	On leading edge On leading edge On state On state On leading edge On leading edge On leading edge On leading edge (**) On leading edge (**) On state On state On state

Read state

Functions related to digital inputs

- MAN / AUTO controller

- LOC / REM

- HOLD

- Reset memory latch

- Select SP1 / SP2

- Software OFF / ON

- START / STOP Selftuning

- START / STOP Autotuning

see AUTO/MAN CONTROL

see SETTING THE SETPOINT

see HOLD FUNCTION

see GENERIC ALARMS AL1 .. AL4

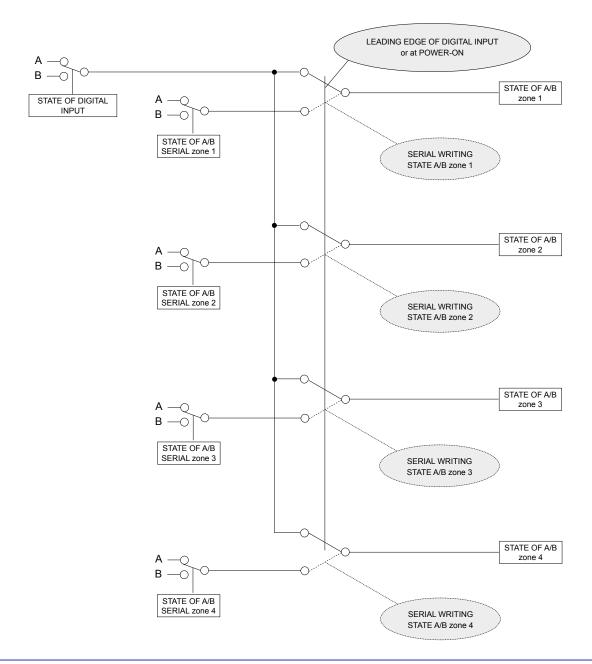
see SETTINGS - Multiset

see SOFTWARE SHUTDOWN

see SELFTUNING

see AUTOTUNING

^(*) For diG. only (**) IN diG. alternative to serial

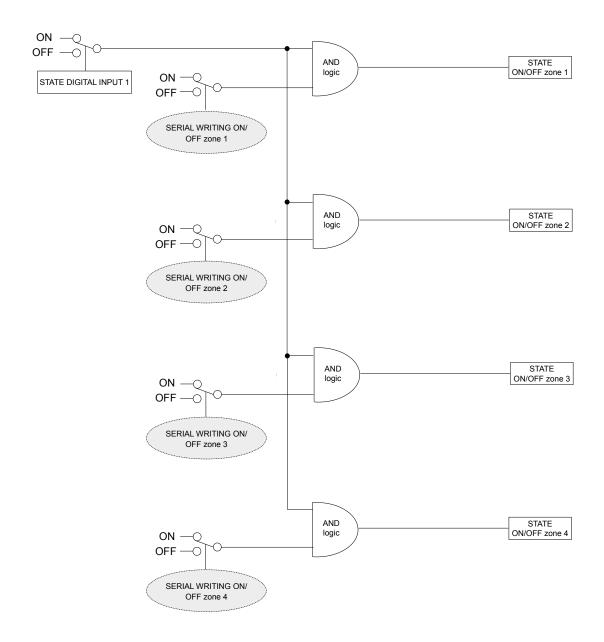

USING A FUNCTION ASSOCIATED WITH DIGITAL INPUT AND VIA SERIAL

At power-on or on the leading edge of digital input 1 or 2, all zones assume the state set by the digital input. For each zone, this state can be changed by writing via serial.

The setting via serial is saved in eeprom (STATUS_W_EEP, address 698).

State A/B	Setting	Address for w	riting via serial
	dIG. or dIG.2	Access at 16 bits	Access at 1 bit
AUTO/MAN controller	1 word 305	bit 4	bit 1
LOC/REM setpoint	2 word 305	bit 6	bit 10
SP1/SP2 setpoint	5 word 305	bit 1	bit 75
ON/OFF software	6 word 305	bit 3	bit 11
STOP/START selftuning	8 word 305	bit 2	bit 3
STOP/START autotuning *	9 word 305	bit 5	bit 29

^{*} continuos or one-shot



USING A FUNCTION OF DIGITAL INPUT 1 TO ENABLE AT SOFTWARE ON

Software ON can be configured either by enabling a digital input or by writing via serial. Enabling by digital input 1 1 (diG) is common to all zones, whereas enabling via serial is specific for each individual zone.

The ON/OFF setting via serial is saved in eeprom (STATUS_W_EEP, address 698 bit 3) for resetting of the condition at the next hardware power-on; use parameter P.On.t. to force software always ON or software always OFF at next power-on.

	Setting	Address for wr	iting via serial
	dlG	Access at 16 bits	Access at 1 bit
ON/OFF software	13	word 305 bit 3	bit 11

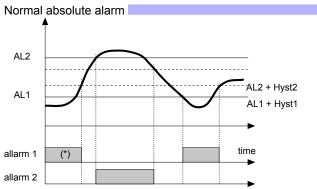
ALARMS

GENERIC ALARMS AL1, AL2, AL3 and AL4

Four generic alarms are always available and can perform various functions.

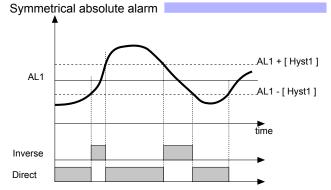
Typically, alarm AL.1 is defined as minimum and AL.2 as maximum.

These alarms are set as follows:

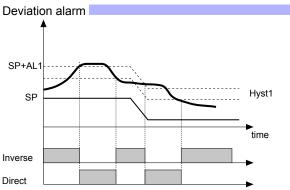

- select the reference variable to be used to monitor the value (parameters A1.r, A2.r, A3.r and A4.r): the origin of the variable can be chosen from the process variable PV (generally linked to the main input), the ammeter input, the voltmeter input, the auxiliary analog input, or the active setpoint.
 - set the value of the alarm setpoint (parameters AL.1, AL.2, AL.3 and AL.4).

This value is used for comparison with the reference variable value: it can be absolute or indicate a shift from the variable in case of deviation alarm.

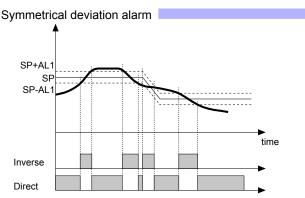
- set the hysteresis value for the alarm (parameters Hy.1, Hy.2, Hy.3 and Hy.4):


the hysteresis value defines a band for safe re-entry of the alarm condition: without this band, the alarm would be deactivated as soon as the reference variable re-entered the setpoint limits, with the possibility of generating another alarm signal in the presence of oscillations of the reference signal around the setpoint value.

- select alarm type:
- absolute/deviation: if the alarm refers to an absolute value or to another variable (for example, to the setpoint).
- direct/reverse: if the reference variable exceeds the alarm setpoint in the "same direction" as the control action or not. For example, the alarm is direct if the reference variable exceed the upper setpoint value during heating or assumes values below the lower setpoint during cooling. In the same manner, the alarm is reverse if the reference variable assumes values below the lower setpoint during heating or exceeds the setpoint during cooling.
- normal/symmetrical: if band value is subtracted or added, respectively, to/from the upper and lower limit of the alarm setpoints or indicates a higher and lower band compared to the alarm setpoint.
- with/without disabling at switch-on: if you want to check the reference variable value at system switch-on or wait until the variable enters the control window.
- with/without memory: if the alarm signal persists even when the cause has been eliminated or stops when the variable returns to normal values.
- definition of upper and lower limits for setting absolute alarms: if the alarm is used to check that the operator does not set a setpoint value outside a certain band during multiset operation. The above concepts are better explained in the following figures:



For AL1 reverse absolute alarm (low) with positive Hyst1, AL1 t = 1 (*) = OFF if disabled at switch on


For AL2 direct absolute alarm (high) with negative Hyst2, AL2 t = 0

For AL1 = symmetrical inverse absolute alarm with Hyst1, AL1 t = 5 For AL1 = symmetrical direct absolute alarm with Hyst1, AL1 t = 4 Minimum hysteresis = 2 scale points

For AL1 = normal inverse deviation alarm with negative Hyst 1, AL1 t = 3 For AL1 = normal direct deviation alarm with negative Hyst 1, AL1 t = 2

For AL1 = Symmetrical inverse deviation alarm with Hyst 1, AL1 t = 7 For AL1 = Symmetrical direct deviation alarm with Hyst 1, AL1 t = 6

Reference variables

215	A1.r	R/W	Select reference variable alarm 1
216	A2.r	R/W	Select reference variable alarm 2
217	A3.r	R/W	Select reference variable alarm 3
218	A4.r	R/W	Select reference variable alarm 4

	Table of alarm reference s	setpoints	0
	Variable to be compared	Reference setpoint	
0	PV (process variable)	AL	0
1	in.tA1	AL	
	(In.tA1 OR In.tA2 OR In.tA3		
	WITH 3-PHASE LOAD)		0
2	In.tV1	AL	
	(In.tV1 OR In.tV2 OR In.tV3		
	WITH 3-PHASE LOAD)		1 0 1
3	SPA (active setpoint)	AL (absolute only)	0
4	PV (process variable)	AL [deviation only and	
		referred to SP1	
		(with multiset function)	
5	In.2 auxiliary input	AL	
	N.B. for codes 1, 2 and 5, the reference and not to the decimal point (dP.S)	e to the alarm is in scale points	

Alarm setpoints

12 475 - 177	AL.1	R/W	Alarm setpoint 1 (scale points)	500
13 476 - 178	AL.2	R/W	Alarm setpoint 2 (scale points)	100
14 52 - 479	AL.3	R/W	Alarm setpoint 3 (scale points)	700
58 480	AL.4	R/W	Alarm setpoint 4 (scale points)	800

Alarms hysteresis

27 187	HY.1	R/W	<u>Hysteresis</u> for alarm 1	± 999 Scale poir	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	- 1
30 188	HY.2	R/W	Hysteresis for alarm 2	± 999 Scale poir	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	- 1
53 189	HY.3	R/W	Hysteresis for alarm 3	± 999 Scale poir	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	- 1
59	HY.4	R/W	Hysteresis for alarm 4	± 999 Scale poir	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	- 1

Alarm type

406	A1.t	R/W	Alarm type 1
407	A2.t	R/W	Alarm type 2
408 54	A3.t	R/W	Alarm type 3
409	A4.t	R/W	Alarm type 4

	Table of a	alarm behaviour		0
	Direct (high limit) Inverse (low limit)	Absolute Relative to activfe setpoint	Normal Symmetrical (window)	0
0	direct	absolute	normal	
1	inverse	absolute	normal	_
2	direct	relative	normal	0
3	inverse	relative	normal	
4	direct	absolute	symmetrical	
5	inverse	absolute	symmetrical	0
6	direct	relative	symmetrical	
7	inverse	relative	symmetrical	

- + 8 to disable at switch-on until first setpoint
 + 16 to enable memory latch
 + 32 Hys becomes delay time for activation of alarm (0...999 sec.)
 (excluding absolute symmetrical)
 + 64 Hys becomes delay time for activation of alarm (0...999 min.)
 (excluding absolute symmetrical)
 + 136 to disable at switch-on or at change of setpoint until first setpoint
 + 256 only for alarms with memory and delay time: the delay time becomes
 a timed hysteresis (with time stopped in case of SBR condition: when SBR
 condition disappears the delay time starts counting from zero)

46 bit	AL1 direct/inverse	R/W
47 bit	AL1 absolute/relative	R/W
48 bit	AL1 normal/symmetrical	R/W
49 bit	AL1 disabled at switch-on	R/W
50 bit	AL1 with memory	R/W
54 bit	AL2 direct/inverse	R/W
55 bit	AL2 absolute/relative	R/W
56 bit	AL2 normal/symmetrical	R/W
57 bit	AL2 disabled at switch-on	R/W
58 bit	AL2 with memory	R/W
36 bit	AL3 direct/inverse	R/W
37 bit	AL3 absolute/relative	R/W
38 bit	AL3 normal/symmetrical	R/W
39 bit	AL3 disabled at switch-on	R/W
40 bit	AL3 with memory	R/W
70 bit	AL4 direct/inverse	RW
71 bit	AL4 absolute/relative	RW
72 bit	AL4 normal/symmetrical	RW
73 bit	AL4 disabled at switch-on	RW
74 bit	AL4 with memory	R/W

Limits of absolute alarm settings

25 20 - 28 - 142	Lo.L	R/W	Lower settable limit SP, SP remote and absolute alarms	Lo.S Hi.S	See: SETTINGS – Setpoint Control	0
26 21 - 29 - 143	Hi.L	R/W	Upper settable limit SP, SP remote and absolute alarms	Lo.S Hi.S		1000

Enable alarms

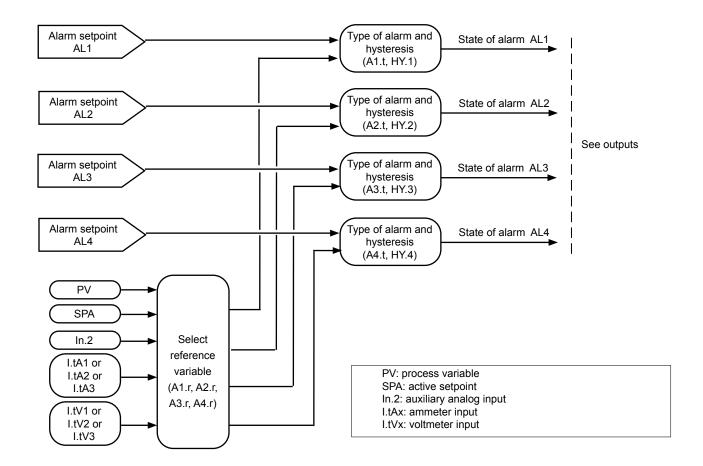
195	AL.n	R/W	Select number of enabled alarms
-----	------	-----	---------------------------------

AL.nr	Alarm 1	Alarm 2	Alarm 3	Alarm 4	
0	disabled	disabled	disabled	disabled	
1	enables	disabled	disabled	disabled	
2	disabled	enables	disabled	disabled	
3	enables	enables	disabled	disabled	
4	disabled	disabled	enables	disabled	
5	enables	disabled	enables	disabled	
6	disabled	enables	enables	disabled	
7	enables	enables	enables	disabled	
8	disabled	disabled	disabled	enables	
9	enables	disabled	disabled	enables	
10	disabled	enables	disabled	enables	
11	enables	enables	disabled	enables	
12	disabled	disabled	enables	enables	
13	enables	disabled	enables	enables	
14	disabled	enables	enables	enables	
15	enables	enables	enables	enables	

Reset memory latch

140	diG.	R/W	Digital input function
618	dIG.2	R/W	Digital input function 2

	Digital input functions table		0
0	No function (input off)		
1	MAN /AUTO controller		n
2	LOC / REM	-	"
3	HOLD		
4	AL1,, AL4 latch alarm reset	-	
5	SP1 / SP2 selection	_	
6	Software on/off		
7	None		
8	START / STOP Selftuning	-	
9	START / STOP Autotuning		
10	Power_Fault latch alarm reset		
11	LBA alarm reset		
12	AL1 AL4 and Power_Fault latch alarm		
	reset		
13	Enable at software ON (*)		
	+ 16 for inverse logic input		
	+ 32 to force logic state 0 (OFF)		
	+ 48 to force logic state 1 (ON)		

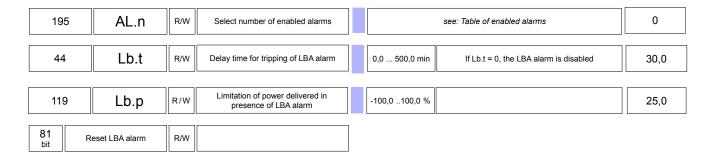

(*) For diG. only

79 Reset memory latch	R/W	
-----------------------	-----	--

Read state

4	STATE of	R	OFF = Alarm off
bit	ALARM 1		ON = Alarm on
5	STATE of	R	OFF = Alarm off
bit	ALARM 2		ON = Alarm on
62	STATE of	R	OFF = Alarm off
bit	ALARM 3		ON = Alarm on
69	STATE of	R	OFF = Alarm off
bit	ALARM 4		ON = Alarm on
318		R	State of alarms ALSTATE_IRQ

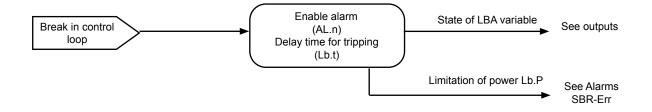
	States of alarm table								
bit									
0	State AL.1								
1	State AL.2								
2	State AL.3								
3	State AL.4								
4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault								
5	State AL.HB PHASE 1 (if 3-phase)								
6	State AL.HB FASE 2 (if 3-phase)								
7	State AL.HB FASE 3 (if 3-phase)								


LBA ALARM (Loop Break Alarm)

This alarm identifies incorrect functioning of the control loop due to a possible load break or to a short circuited or reversed probe.

With the alarm enabled (parameter AL.n), the instrument checks that in condition of maximum power delivered for a settable time (Lb.t) greater than zero, the value of the process variable increases in heating or decreases in cooling: if this does not happen, the LBA alarm trips. In these conditions, power is limited to value (Lb.P).

The alarm condition resets if the temperature increases in heating or decreases in cooling.


Enable alarm

Read state

FUNCTIONAL DIAGRAM

HB ALARM (Heater Break Alarm)

This type of alarm identifies load break or interruption by reading the current delivered by means of a current transformer.

The following three fault situations may occur:

- delivered current is lower than theoretical current: this is the most common situation, and indicates that a load element is breaking.
- delivered current is higher than theoretical current: this situation occurs, for example, due to partial short circuits of load elements.
- delivered current remains significant even during periods in which it should be zero: this situation occurs in the presence of pilot circuits for the short-circuited load or due to relay contacts soldered together. In these cases, prompt action is very important to prevent greater damage to the load and/or to the pilot circuits.

In standard configuration, output OUT1 is associated to heating control in zone 1, obtained by modulating electrical power with the ON/OFF control based on the set cycle time.

The current read performed during the ON phase identifies an anomalous shift from the rated value due to a load break (first two fault situations described above), while the current read performed during the OFF phase identifies a break in the control relay, with consequent output always active (third fault situation).

The alarm is enabled by means of parameter AL.n; select the type of function you want by means of parameter Hb.F:

Hb.F=0: alarm activates if the current load value is below the setpoint value set in A.Hbx while the associated control output is ON.

Hb.F=1: alarm activates if the current load value is above the setpoint value set in A.Hbx while the associated control output is OFF.

Hb.F=2: alarm activates by combining functions 0 and 1, considering the setpoint of function 1 as 12% of the ammeter full scale defined in H.tAx.

Hb.F=3 or Hb.F=7 (continuous alarm): alarm activates due to a load current value below the setpoint value set in A.Hbx; this alarm does not refer to the cycle time and is disabled if the heating (cooling) output value is below 3%.

Setting A.Hbx = 0 disables both types of HB alarm by forcing deactivation of the alarm state.

The alarm resets automatically if its cause is eliminated.

An additional configuration parameter for each zone, related to the HB alarm is:

Hb.t = delay time for activation of HB alarm, understood as the sum of times for which the alarm is considered active. For example, with:

- Hb.F = 0 (alarm active with current below setpoint value),
- Hb.t = 60 sec and cycle time of control output = 10 sec,
- power delivered al 60%,

the alarm will activate after 100 sec (output ON for 6 sec each cycle);

if power is delivered at 100%, the alarm will activate after 60 sec.

If the alarm deactivates during this interval, the time sum is reset.

The delay time set in Hb.t must exceed the cycle time of the associated output.

If zone 1 has a 3-phase load, you can set three different setpoints for the HB alarm:

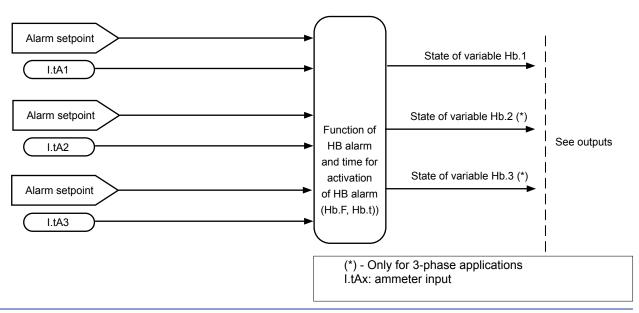
A.Hb1= alarm setpoint for line L1

A.Hb2= alarm setpoint for line L2

A.Hb3= alarm setpoint for line L3

Enable alarm

195	AL.n	R/W	Select number of enabled alarms			0	
57	Hb.F	R/W	HB alarm functions		Table of HB alarm functions		0
Default: SINGLE-PHASE LOAD: each A.HbX refers to its respective phase. 2-PHASE LOAD: single reference setpoint A.Hb1 and OR between phases 1, 2 and phases 3, 4. 3-PHASE LOAD: single reference setpoint A.Hb1 and OR among phases 1, 2 and 3.				set point fc 1 Relay, logic set point fc 2 Alarm activ (OR logic t 3 Continuous 7 Continuous + 8 HB reverse ala + 16 relates to sing LOAD	c output: alarm active at a load current value below or control output ON time. c output: alarm active at a load current value above or control output OFF time. ve if one of functions 0 and 1 is active between functions 0 and 1) (*) s heating alarm so cooling alarm arm le setpoints and singled phases WITH 2 and 3-PHASE point is set at 12% of ammeter full scale		
56	Hb.t	R/W	Delay time for activation of HB alarm		0 999 sec	The value must exceed the cycle time of the output to which the HB alarm is associated.	30


Alarm setpoints

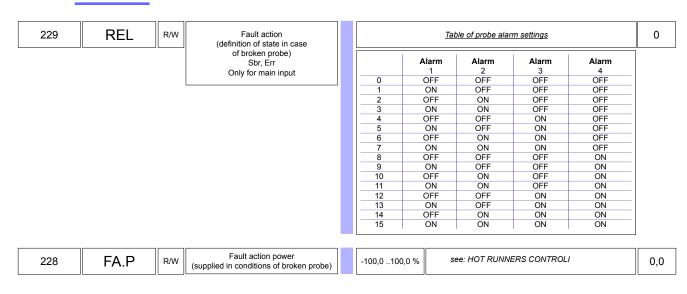
55	A.Hb	R/W	HB alarm setpoint (scale points ammeter input - Phase 1)		10,0
502	A.Hb2	R/W	HB alarm setpoint (scale points ammeter input - Phase 2)	With 3-phase load	10,0
503	A.Hb3	R/W	HB alarm setpoint (scale points ammeter input - Phase 3)	With 3-phase load	10,0

Read state

26 bit		LARM STATE OR OWER_FAULT	R	OFF = Alarm off ON = Alarm on	
76 bit	Sta	ate of HB alarm phase 1TA	R		
77 bit	Sta	ate of HB alarm phase 2TA	R		
78 bit	St	ate of HB alarm phase 3TA	R		
50	4		R	HB alarm states ALSTATE_HB (for 3-phase loads)	Table of HB alarm states
					bit 0 HB TA2 time ON 1 HB TA2 time OFF 2 HB alarm TA2 3 HB TA3 time ON 4 HB TA3 time OFF 5 HB alarm TA3
51	2		R	States of alarm ALSTATE (for single-phase loads)	Table of alarm states ALSTATE
					bit 4 HB alarm time ON 5 HB alarm time OFF 6 HB alarm

FUNCTIONAL DIAGRAM

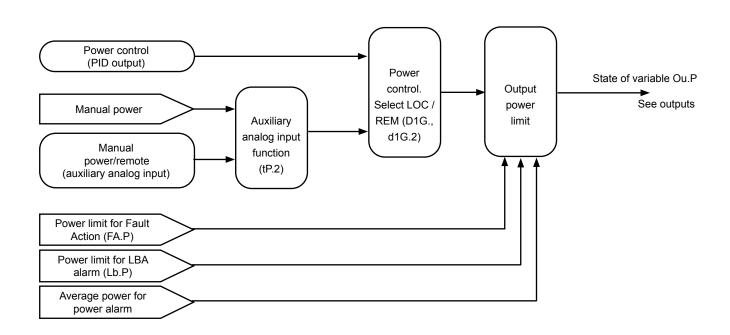
ALARM SBR - ERR (probe in short or connection error)


This alarm is always ON and cannot be deactivated. It controls correct functioning of the probe connected to the main input.

In case of broken probe:

- the state of alarms AL1, AL2, AL3 and AL4 is set based on the value of parameter rEL;
- control power control is set to the value of parameter FAP.

Identification of the type of break detected on the main input is contained in Err.


Enable alarm

Read state

	85	Err	R	Error code in self-diagnostics of main input	See: Table of error codes
9 bit	11	TATE OF INPUT IN SBR	R	OFF = - ON = Input in SBR	

FUNCTIONAL DIAGRAM

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE, SSR_OPEN and NO_CURRENT)

GFX4 with 4 TA

660 hd.2 R/W Enable POWER_FAULT alarms

	SSR_SHORT	NO_ VOLTAGE	SSR OPEN	NO_CURRENT				
0								
1	X							
2		X						
3	X	X						
4			X					
5	X		Χ					
6		X	Χ					
7	X	X	Χ					
8				X				
9	X			X				
10		X		X				
11	X	X		X				
12			Χ	X				
13	X		X	X				
14		X	Χ	X				
15	X	X	X	X				

NOTE: the NO_CURRENT alarm setpoint is fixed at 1A

662 dG.F R/W Time filter for NO_VOLTAGE, SSR_OPEN and NO_CURRENT alarms Note: set a value not inferior to cycle time. 099 sec 10	661	dG.t	R/W	Refresh rate SSR_SHORT The alarm activates after 3 faults.		1999 sec	10
	662	dG.F	R/W			099 sec	10

Note: with output power at 100%, NO_VOLTAGE alarm in diagnostic is detected only if an SSR_SHORTcode is active.

- Note related to the parameter dG.t only with 4 CT
 * for dG.t < 10 sec. the SSR_SHORT alarm is detected every dG.t seconds only when power = 0%.
- * for $dG.t \ge 10$ sec. the SSR_SHORT alarm is detected every dG.t seconds switching off the power for 60 msec. indipendently from the power value.

GFX4 with 1 TA

hd.2	R/W	Enable POWER_FAULT alarms		
				E
				F
				F
				E
				F
glob	al for all	4 zones		
	NOTE: - Acti	NOTE: - Activation al	NOTE: - Activation and state of alarm SSR SHORT is global for all 4 zones - the NO_CURRENT alarm setpoint is fixed at 1A	NOTE: - Activation and state of alarm SSR SHORT is global for all 4 zones

Table of Power Fault alarms				
	SSR_SHORT	NO_CURRENT		
0				
1	X			
2				
3	X			
4				
5	X			
6				
7	X			
8		X		
9	X	X		
10		X		
11	X	X		
12		X		
13	X	X		
14		X		
15	X	X		
+ 32	alarms with memory			

661	dG.t	R/W	Refresh rate In.TA, SSR_SHORT and NO_CURRENT alarms The alarm activates after 3 faults.	1999 sec		10
663	663 dG.P R/W		Minimum power for acquisition In.TA and for NO_CURRENT alarm	0.0100.0%		10,0
			Note: with output power < dG.P the SSR_SHORT alarm in diagnostic is not detected.		-	

GFXTERMO4 with 4 TA

660 hd.2 R/W Enable POWER_FAULT alarms

Table of Power Fault alarms					
	SSR_SHORT	NO_CURRENT			
0					
1	X				
2					
3	X				
4					
5	X				
6					
7	X				
8		X			
9	X	X			
10		X			
11	X	X			
12		X			
13	X	X			
14		X			
15	X	X			
+ 32 alarms with memory					

NOTE: the NO_CURRENT alarm setpoint is fixed at 1A

661	dG.t	R/W	Refresh rate SSR_SHORT The alarm activates after 3 faults.	1999 sec	10
662	dG.F	R/W	Time filter for NO_CURRENT alarms Note: set a value not inferior to cycle time.	099 sec	10

Read state

105 bit	Reset SSR_OPEN /SSR_ SHORT / NO_VOLTAGE / NO_CURRENT alarms	R/W	
93 bit	State of alarm SSR_OPEN phase 1	R	
94 bit	State of alarm SSR_OPEN phase 2	R	
95 bit	State of alarm SSR_OPEN phase 3	R	
96 bit	State of alarm SSR_SHORT phase 1	R	
97 bit	State of alarm SSR_SHORT phase 2	R	
98 bit	State of alarm SSR_SHORT phase 3	R	
99 bit	State of alarm NO_VOLTAGE phase 1	R	
100 bit	State of alarm NO_VOLTAGE phase 2	R	
101 bit	State of alarm NO_VOLTAGE phase 3	R	
102 bit	State of alarm NO_CURRENT phase 1	R	
103 bit	State of alarm NO_CURRENT phase 2	R	
104 bit	State of alarm NO_CURRENT phase 3	R	

Overheat alarm

The controller has a temperature sensor for the internal heatsink.

The temperature value of the heatsink is in variable INPTC; the over_heat alarm trips when the temperature exceeds 85° C.

This condition may be caused by obstructed air vents or by a blocked cooling fan.

Is provided the intervention of the alarm also for speed of temperature rise (derivate) INPTC greater than 7°C in 12 seconds.

With the over_heat alarm on, the control disables control outputs OUT 1, OUT 2, OUT 3 and OUT 4.

The alarm over_heat is canceled when the heat sink temperature falls below the value of 75°C.

There is another maximum temperature protection that disables the hardware for the SSR controls.

655	R	INPTC: SSR temperature	°C
675	R	INPTC_DER: derivative of the SSR temperature	°C/12sec

OUTPUTS

The modular power controller has high flexibility in the assignment of functions to the physical outputs. As a result, the instrument can be used in sophisticated applications.

A function is assigned to each physical output in two steps: first assign the function to one of internal reference signals rL.1 .. rL.6, and then attribute the reference signal to parameters out.1 .. out.10 (corresponding to physical outputs OUT1 .. OUT10).

In standard configuration, physical outputs Out1, Out2, Out3, Out4 perform the heating control function (Heat) for zone 1, zone 2, zone 3 and zone 4, respectively; value 0 (function HEAT) is assigned to reference signals rL.1 in each zone, and the following values to the output parameters: out.1=1 (output rL.1 zone 1), out.2=2 (output rL.1 zone 2), out.3=3 (output rL.1 zone 3) and out.4=4 (output rL.1 zone 4).

Physical outputs Out5, Out6, Out7, Out8 are optional, and the type (relay, logic, continuous or triac) is defined by the order code. In standard configuration, these outputs perform the cooling control function (Cool) for zone 1, zone 2, zone 3 and zone 4, respectively. In this configuration, value 1 (function COOL) is assigned to reference signals rL.2 in each zone, and the following values to the output parameters: out.5=5 (output rL.2 zone 1), out.6=6 (output rL.2 zone 2), out.7=7 (output rL.2 zone 3) and out.8=8 (output rL.2 zone 4).

Relay outputs Out9 and Out10 are always present, programmable by means of parameters out.9 and out.10, to which available alarm signal functions are assigned by means of the four reference signals rL.3, rL.4, rL.5, rL.6 in each zone.

Standard configuration has the following assignments:

- reference signals: rL.3=2 (function AL1), rL.4=3 (function AL2), rL.5=4 (function AL3) and rL.6=5 (function AL.HB or POWER FAULT with HB alarm).
- output parameters: out.9 = 17 and out.10 = 18.

In this way, the state of output physical Out9 is given by the logic OR of AL1, AL3 in each zone, and the state of output Out10 is given by the logic AND of AL2, AL.HB in each zone.

Each output can always be disabled by setting parameter out x = 0.

The state of outputs Out1,...,Out10 can be acquired by serial communication by means of bit variables.

The following additional configuration parameters are related to the outputs:

Ct.1 = cycle time for output rL.1 for heating control (Heat)

Ct.2 = cycle time for output rL.2 for cooling control (Cool)

rEL = alarm states AL1, AL2, AL3, AL4 in case of broken probe, Err, Sbr

(see: SETTINGS)
(see: SETTINGS)
(see: GENERIC ALARMS)

Allocation of reference signals

160	rL.1	R/W	Allocation of <u>reference signal</u>
163	rL.2	R/W	Allocation of reference signal

NOTE: Parameters rL.1, ..., rL.6 for each zone can be considered as internal states.

Ex.: To assign alarm AL1 to physical output OUT5, assign rL.1-Zone1=2 (AL1-alarm 1) and than assign parameter out 5=1 (rl. 1-Zone1)

than assign parameter out.5=1 (rL.1-Zone1)

NOTE: continuous COOL OUTPUTS can be assigned codes 0, 1, 64 and 65 only, with cycle time fixed at 100 ms $\,$

	Table of reference signals	0
0	HEAT (heating control output) / in case of continuous output 020mA / 010V	1
1	COOL (cooling control output) / in case of continuous output 020mA / 010V	'
2	AL1 - alarm 1	
3	AL2 - alarm 2	
4	AL3 - alarm 3	
5	AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)	
6	LBA - LBA alarm	
7	IN1 – repetition of logic input DIG1	
8	AL4 - alarm 4	
9	AL1 or AL2	
10	AL1 or AL2 or AL3	
11	AL1 or AL2 or AL3 or AL4	
12	AL1 and AL2	
13	AL1 and AL2 and AL3	
14	AL1 and AL2 and AL3 and AL4	
15	AL1 or AL.HB or POWER FAULT with HB alarm (TA1 OR TA2 OR TA3)	
16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
19	AL.HB - HB alarm (TA2)	
20	AL.HB - HB alarm (TA3)	
21	Setpoint power alarm	
22	AL.HB - HB alarm (TA1)	
23	POWER_FAULT	
24	IN2 - repetition of logic input DIG2	
29	Communication error	
64	HEAT (heating control output) with fast cycle time 0.1 20.0sec. / in case of continuous output 420mA / 210V	
65	COOL (cooling control output) with fast cycle time 0.1 20.0sec. / in case of continuous output 420mA / 210V	
	2 for logic level denied in output 28 to force output to zero	

166	rL.3	R/W Allocation of reference signal	
170	rL.4	R/W Allocation of reference signal	
171	rL.5	R/W Allocation of reference signal	
172	rL.6	R/W Allocation of reference signal	

	AL1 - alarm 1	
_	AL2 - alarm 2	2
	AL3 - alarm 3	
	AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)	
6	LBA - LBA alarm	35
7	IN1 - repetition of logic input DIG1	00
_	AL4 - alarm 4	
	AL1 or AL2	
10	AL1 or AL2 or AL3	4
	AL1or AL2 or AL3 or AL4	
12	AL1 and AL2	
	AL1 and AL2 and AL3	400
	AL1 and AL2 and AL3 and AL4	160
15	AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)	
16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
19	AL.HB - HB alarm (TA2)	
20	AL.HB - HB alarm (TA3)	
21	Setpoint power alarm	
22	AL.HB - HB alarm (TA1)	
23	POWER_FAULT	
24	IN2 - repetition of logic input DIG2	
29	Communication error	
+ 32	2 for denied logic level at output	
+ 12	28 to force output to zero	

Read state

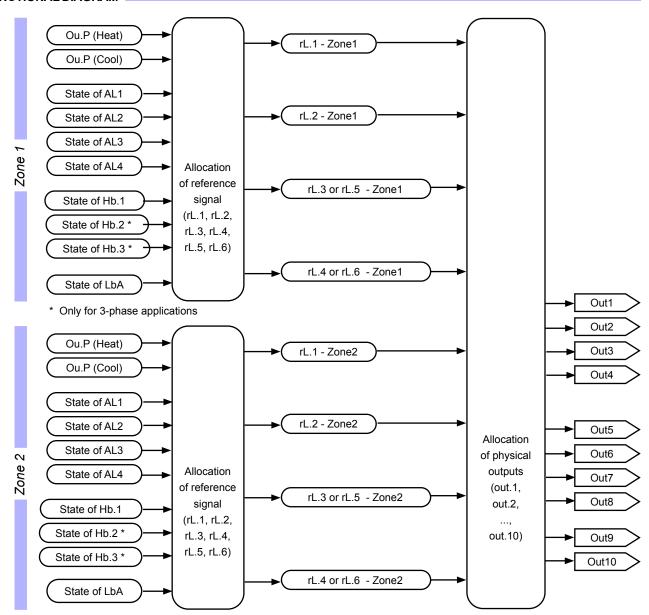
308	R	State of outputs rL.x MASKOUT
319	1	State of Sulputs 1E.X. WASKOOT

12 bit	STATE rL.1	R	OFF = Output off ON = Output on
13 bit	STATE rL.2	R	OFF = Output off ON = Output on
14 bit	STATE rL.3	R	OFF = Output off ON = Output on
15 bit	STATE rL.4	R	OFF = Output off ON = Output on
16 bit	STATE rL.5	R	OFF = Output off ON = Output on
17 bit	STATE rL.6	R	OFF = Output off ON = Output on

		Table of output states
bit		
0	State rL.1	
1	State rL.2	
2	State rL.3	
3	State rL.4	
4	State rL.5	
5	State rL.6	

Allocation of physical outputs

607	out.1	R/W Allocation of physical output OUT 1	
608	out.2	R/W Allocation of physical output OUT 2	
609	out.3	R/W	Allocation of physical output OUT 3
610	out.4	R/W Allocation of physical output OUT 4	
611	out.5	R/W Allocation of physical output OUT 5	
612	out.6	R/W Allocation of physical output OUT 6	
613	out.7	R/W Allocation of physical output OUT 7	
614	out.8	R/W Allocation of physical output OUT 8	
615	out.9	R/W Allocation of physical output OUT 9	
616	out.10	R/W Allocation of physical output OUT 10	


Table of output allocations						
0	Output disabled Output rL.1 zone 1	2				
2	Output rL.1 zone 2	3				
3						
4	Output rL.1 zone 4					
5	Output rL.2 zone 1					
6	Output rL.2 zone 2	4				
7	Output rL.2 zone 3					
8	Output rL.2 zone 4					
9	Output rL.3 OR rL.5 zone 1	5				
10	Output rL.3 OR rL.5 zone 2					
11	Output rL.3 OR rL.5 zone 3	6				
	12 Output rL.3 OR rL.5 zone 4					
13	Output rL.4 AND rL.6 zone 1					
14	Output rL.4 AND rL.6 zone 2					
15	Output rL.4 AND rL.6 zone 3	7				
16	Output rL.4 AND rL.6 zone 4					
17	Output (rL.3 OR rL.5) zone 1zone 4					
18	Output (rL.4 AND rL.6) zone 1zone 4	8				
+32 to re	everse output status only for Logic and Relay output					
NOTE: In 3-phase configuration, the state of physical output OUT1 is copied to OUT2 and OUT3. In 2-phase configuration, the state of physical output OUT1 is copied to OUT2 and the state of physical output OUT3 to OUT4.						
is copied to OUT2 and the state of physical output OUT3 to OUT4 In case of COOL OUTPUT (5,6,7,8) are continuous, the same output functions can not be used on other outputs. Ex: If out.1 = 1 (out rl1 zone 1) it is not possible to set out.5 with the same						
code, if o	out.5 is continuous					

Read state

82 bit	State of output OUT1	R	
83 bit	State of output OUT2	R	
84 bit	State of output OUT3	R	
85 bit	State of output OUT4	R	
86 bit	State of output OUT5	R	
87 bit	State of output OUT6	R	
88 bit	State of output OUT7	R	
89 bit	State of output OUT8	R	
90 bit	State of output OUT9	R	
91 bit	State of output OUT10	R	

664	R	State of outputs	bit 0	OUT 1
			1	OUT 2
			2	OUT 3
			3	OUT 4
			4	OUT 5
			5	OUT 6
			6	OUT 7
			7	OUT 8
			8	OUT 9
			9	OUT 10

FUNCTIONAL DIAGRAM

SETTINGS

The controller has the following setpoint controls.

SETTING THE SETPOINT

The active (control) setpoint (SPA) can be set by means of the local setpoint (_SP) or the remote setpoint (SP.rS). A remote setpoint can assume the value of an auxiliary input or one set via serial line (SP.r).

The remote setpoint can be defined in absolute value or relative to the local setpoint; in the latter case, the control setpoint will be given by the algebraic sum of the set local and the remote setpoint.

Local setpoint

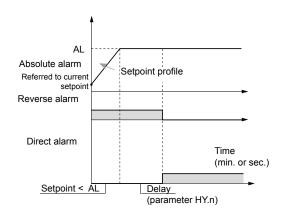
138 16 - 472	_SP	R/W	<u>Local setpoint</u>				0
į	Remote setpo	int					
181	tP.2	R/W	Auxiliary analog input function		See: AUXILIARY	ANALOG INPUT (LIN/TC)	0
			set by means of the auxiliary analog on with parameter tP.2				
18 136 - 249	SP.r	R/W	Remote setpoint (SET gradient for manual power correction)		<u>Se</u>	tpoint table	0
			rection)	+8 r +16	Digital (from serial line) Auxiliary input Auxiliary input et gradient in digit/sec. nanual power correction based disables saving of local setpoi disables saving of local manual		

Shared settings

25 20 - 28 - 142	Lo.L	R/W	Lower settable limit SP, SP remote and absolute alarms	Lo.S Hi.S	0
26 21 - 29 - 143	Hi.L	R/W	Upper settable limit SP, SP remote and absolute alarms	Lo.S Hi.S	1000
10 bit	DCAL/REMOTE	R/W	OFF = Enable local setpoint ON = Enable remote setpoint		
305		R/W	Instrument state	Table of instrument settings	
				bit	

Read active setpoint

1 137 - 481	SPA	R	Active setpoint
4		R	Deviation (SPA - PV)

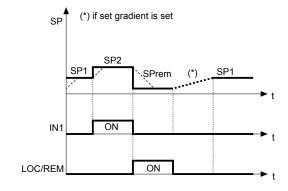

SETPOINT CONTROL

Set gradient

The "Set gradient" function sets a gradual variation of the setpoint, with programmed speed, between two defined values. If this function is active (g.Sp other than 0), at switchon and at auto/man switching the initial setpoint is assumed equal to the PV, and the local or selected set is reached with set gradient. Every variation of set, including variations of the local setpoint, is subject to the gradient.

The value of remote setpoint SP.rS is not saved in eeprom.

The set gradient is inhibited at switch-on when self-tuning is enabled.

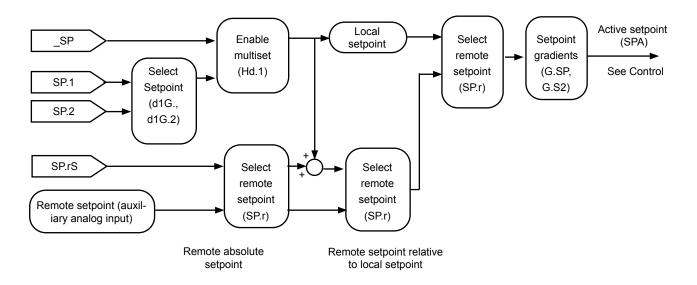

234 22	G.SP	R/W	Set gradient	0.0999.9 digit / min (digit / sec see SP.r)				
259	G.S2	R/W	Set gradient relative to SP2			9.9 digit / min sec see SP.r)		
265	Hot	R/W	Select hot runner functions		<u> </u>	Table of hot runner fund	<u>:tions</u>	
,					Enable hot runners	Fault action power if PV is not stabilized	Enable preheating softstart	
				0		FA.P	promouning contount	-
				1	X	Average power		
				2		FA.P		
				3	X	FA.P		_
				4		FA.P	X	_
				5	X	Average power	X	
				6		FA.P	X	_
				7	X	FA.P	X	_
					ble GS.2	pe in short or connectio	n error (SBR-ERR)	

Multiset

The MULTISET function determines the local setpoint by selecting the value from Setpoint 1 (SP.1) or from Setpoint 2 (SP.2) based on the state of a digital input or by setting from a serial line.

The variation between Setpoint 1 and Setpoint 2 can take place with gradient: parameter G.SP determines the speed for reaching Setpoint 1 and parameter G.S2 defines the speed for reaching Setpoint 2.

The MULTISET function is enabled with parameter hd.1 and automatically enables the gradient function. Selection between Setpoint 1 and Setpoint 2 can be seen by means of LED.



191	hd.1	R/W	Enable multiset: control instruments via serial		Multise	et table		0	
				0 1 2 3 +16 For	Enable Multiset X X Heat/Cool con	Enable virtual instrument X X trol Ctr only: CT connect	cted to cool output		
230	SD1	D/M/	Setnoint 1					100	1

	230 482	SP.1	R/W	Setpoint 1		100
_						
	231 483	SP.2	R/W	Setpoint 2		200

140	diG.	R/W	Digital input function	See: Table of digital input functions	0
618	dIG.2	R/W	Digital input function 2	See: Table of digital input functions	0
75 bit	SELECT SP1 / SP2	R/W	OFF = Select SP1 ON = Select SP2		
305		R/W	Instrument state	Table of instrument settings	
				bit	

FUNCTIONAL DIAGRAM

CONTROLS

PID HEAT/COOL CONTROL

The controller can manage a heating output and a cooling output in a completely independent manner. Heating and cooling parameters are described below. Parameters for <u>PID</u> (proportional band, integral and derivative time) control are typically calculated by means of Autotuning and Selftuning functions.

Control actions

Proportional action:

action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint

Derivative action:

action in which contribution to output is proportional to rate of variation input deviation.

Integral action:

action in which contribution to output is proportional to integral of time of input deviation.

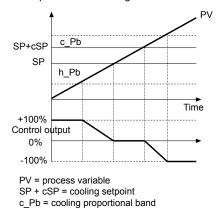
Proportional, derivative, and integral action

Increasing the proportional band reduces oscillation but increases deviation.

Reducing the proportional band reduces deviation but causes oscillation of the controlled variable (excessively low proportional band values make the system unstable).

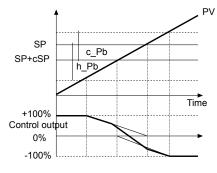
An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation, and prevents oscillation up to a critical Derivative Time value, beyond which deviation increases and there are prolonged oscillations.

An increase in Integral Action corresponds to a decrease in Integral Time, tends to annul deviation between the controlled variable and the setpoint at rated operating speed.


If the Integral Time value is too long (weak Integral Action), there may be persistent deviation between the controlled variable and the setpoint.

For more information on control actions, contact GEFRAN.

Heat/cool control with separate or superimposed band


Output with separate band

Control output with only proportional action in case of proportional heating band separate from cooling band.

Output with superimposed band

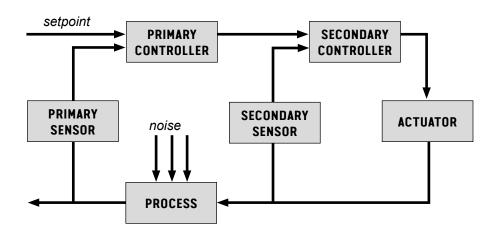
Control output with only proportional action in case of proportional heating band superimposed on cooling band.

PV = process variable

SP = heating setpoint

h_Pb = heating proportional band

Heat/cool control with relative gain


This control mode (enabled with parameter Ctr = 14) asks you to specify cooling type. The <u>PID</u> cooling parameters are then calculated based on heating parameters in the ratio specified (ex: C.ME = 1 (oil), H_Pb = 10, H_dt = 1, H_lt = 4 implies: C_Pb = 12.5, C_dt = 1 . C | It = 4)

Apply the following values when setting cycle times:

Air T Cool cycle = 10 sec.
Oil T Cool cycle = 4 sec.
Water T Cool cycle = 2 sec.

NB.: Cool parameters cannot be changed in this mode.

Cascade Control

Two controllers are arranged in cascade when the output signal from the first becomes the input signal to the second, which in turn sends a signal to the control unit. The primary controller compares the controlled variable to the setpoint, while the secondary controller compares the value of the controlled variable to the signal from the primary controller.

Cascade control provides faster control of the primary variable value.

In addition, the primary variable is less subject to deviations.

The secondary controller keeps the flow constant, changing it only when instructed by the primary controller.

The cascade controller is used especially in very slow processes. In these processes, the error is recovered over a long time, and when noise enters the process, you have to wait a long time before the error is revealed and before corrective action begins; therefore, the corrective action does not start immediately.

After the action has started, you have to wait a long time for the result.

A cascade control is built by finding intermediate controlled variables that can forform rapid corrective actions in case of noise. The primary and secondary controllers are arranged in cascade: each has its own process variable but only the secondary one has an output that commands the process.

The main advantages of cascade control are:

- noise in the secondary loop is corrected by the secondary controller before it can affect the primary variable;
- delays in the secondary part of the process are significantly reduced by the secondary loop, and this increases primary loop response speed;
- gain changes in the secondary part are compensated in its chain; the secondary loop lets the primary controller act precisely on the flow of material or energy.

Cascade control is very useful when you require highly efficient control in the event of noise or when the secondary part of the process involves a long delay.

Cascade control has two controllers (a primary and a secondary); normally, the choice of control actions, based on process speed, is made as follows:

- Generally fast processes: for precise control, integral action in the primary and only proportional in the secondary is sufficient (primary controller PI, secondary controller P).
- Generally, very slow processes: for best system readiness, precision, and stability, configure the primary controller PID and the secondary controller PI.

The simplest example of a cascade control is a controller on a valve positioner: in this application the positioner is used to overcome hystereses and to reduce valve time constants.

Cascade control is normally not required in fast control loops (flow rates, pressures, etc.) and is more useful in temforature controls.

On GFX4 and GFXTERMO4 series:

• the parameter **APP.p** allow one cascade regulation between PID.1/PID.2 or PID.3/PID.4, or two cascade regulations between PID.1/PID.2 and PID.3/PID.4.

The default value is: CASCADE disable.

- the control PID.1 output (PID.3) is the set point of PID.2 (PID.4): configure PID.2 (PID.4) to remote (setpoint LOC/REM function of the corresponding zone STATUSWORD)
- primary sensor is IN.1 (IN.3)
- secondary sensor is IN.2 (IN.4)
- the parameter APP.t configure the control reference for the cascade control, necessary to scale the PID.1 (PID.3) output power into remote setpoint od PID.2 (PID.4)
- as the scale of IN.2 (IN.4), from HI.S2-Lo.S2 (HI.S4-Lo.S4)
- as the scale of PID.2 (PID.4), from HI.L2-Lo.L2 (HI.L4-Lo.L4)
- with the APP.t parameter the operator could configure:
 - PID.1/PID.2 (and/or PID.3/PID.4) in cascade control with HEAT control ouput of PID.1 (PID.3) = setpoint to PID.2 (PID.4)*
 - PID.1/PID.2 (and/or PID.3/PID.4) in cascade control with COOL control ouput of PID.1 (PID.3) = setpoint to PID.2 (PID.4)*
 - PID.1/PID.2 (and/or PID.3/PID.4) in cascade control with HEAT+COOL control ouput of PID.1 (PID.3) = setpoint to PID.2 (PID.4)*

PID.1 (PID.3) control often automatically keep PV.1 (PV.3) = SSP.1 (SSP.3)

PID.2 (PID.4) control often keep PV.2 (PV.4) = OUP.1 (OUP.3) in remote setpoint mode

Tuning two PIDs configured for cascade control

If you need to tune two PIDs configured for cascade control do as follows:

- 1. Set the primary PID to Manual and keep the secondary PID in Automatic mode
- 2 Set the value of power delivered by the primary PID (secondary PID setpoint)
- 3 Start the Self-Tuning procedure for the secondary PID
- 4 When the Self-Tuning procedure for the secondary PID is done, return the primary PID to Automatic
- 5 Start the Self-Tuning procedure for the primary PID

902 APP.t R/	Application type
--------------	------------------

<u>Table application type</u>								
APP.t	4 indipendent PID	PID.1 / PID.2 cascade	PID.3 / PID4 icascade					
0	YES	NO	NO					
1	NO	HEAT	NO					
2	NO	COOL	NO					
3	NO	HEAT/COOL	NO					
8	NO	NO	HEAT					
9	NO	HEAT	HEAT					
10	NO	COOL	HEAT					
11	NO	HEAT/COOL	HEAT					
16	NO	NO	COOL					
17	NO	HEAT	COOL					
18	NO	COOL	COOL					
19	NO	HEAT/COOL	COOL					
24	NO	NO	HEAT/COOL					
25	NO	HEAT	HEAT/COOL					
26	NO	COOL	HEAT/COOL					
27	NO	HEAT/COOL	HEAT/COOL					

⁺⁴ setpoint scale of PID.2 is the reference of cascade control PID.1/PID.2 $\,$

⁺³² setpoint scale of PID.4 is the reference of cascade control PID.3/PID.4

PID Parameters

Selection of process variable of zone / Zone reference power 617 SPU R/W

Table of selections PV zone 1 PV zone 2 2 3 4 PV zone 3 PV zone 4 POWER zone 1 (*) 10 11 POWER zone 2 (*) POWER zone 3 (*) POWER zone 4 (*)

- (*): The reference power of a slave zone in automatic mode is the power of a master zone in automatic or manual mode.
- The reference power of a slave zone in manual mode is the zone manual power.
 Software shutdown remains independent for each zone.

180	Ctr	R/W	Control type
-----	-----	-----	--------------

WARNING: the Control ("Ctr") default parameter changed REP. from "6" to "134" starting from products with serial number "SN 1013A1965" (March 2010).

The option "+128", used to disable the "Integral power reset" has been introduced as an improvement, starting from the Software version "1.43".

We strongly suggest to verify the eventual recipes created with Software versions before the 1.43, because, if the parameter "Ctr" is included in the recipe, it could be configured in an undesirable way.

	Table of heat/cool controls	134
Val	Control type	
0	P heat	
1	P cool	
2	P heat / cool	
3	PI heat	
4	PI cool	
5	PI heat / cool	
6	PID heat	
7	PID cool	
8	PID heat / cool	
9	ON-OFF heat	
10	ON-OFF cool	
11	ON-OFF heat / cool	
12	PID heat + ON-OFF cool	
13	ON-OFF heat + PID cool	
14	PID heat + cool with relative gain (see parameter C.ME)	
+0 sam	sample time for derivative action. ple 1 sec.	
+16 sa	mple 4 sec.	

zone 3

zone 4

- +32 sample 8 sec.
- +64 sample 240 msec.
- +128 No Reset of integral component at setpoint change

Note: the LBA alarm is not enabled in the ON/OFF control.

5 148 - 149	h.Pb	R/W	Proportional band for heating or hysteresis ON/OFF		0999,9% f.s.				1,0
7 150	h.lt	R/W	Integral heating time		0.0099,99 min				4,00
8 151	h.dt	R/W	Derivative heating time		0.0099,99 min				1,00
6	c.Pb	R/W	Proportional band for cooling or hysteresis ON/OFF		0999,9% f.s.				1,0
				Ξ					
76	c.It	R/W	Integral cooling time		0.0099,99 min				4,00
				Ξ					
77	c.dt	R/W	Derivative cooling time		0.0099,99 min				1,00
Note: Parame	eters c.PB, c.It a	and c.a	It are read-only if heat/cool contro	ol is	enabled with re	elative ga	in (Ctr = 1	4).	
513	C.ME	R/W	Select cooling fluid		02			Relative gain (rG)	0
						0	Air	1	
						1 2	Oil	0,8	
						2	Water	0,4	

1 ...200 sec (0,1 ...20 sec)

1 ...200 sec (0,1 ...20 sec) Set 0 for GTT function See POWER CONTROL

2

20

Read state

Ct.1

Ct.2

The following registers are accessible via serial line:

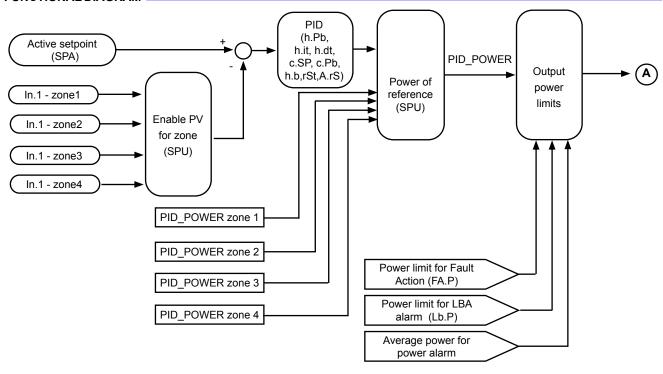
R/W

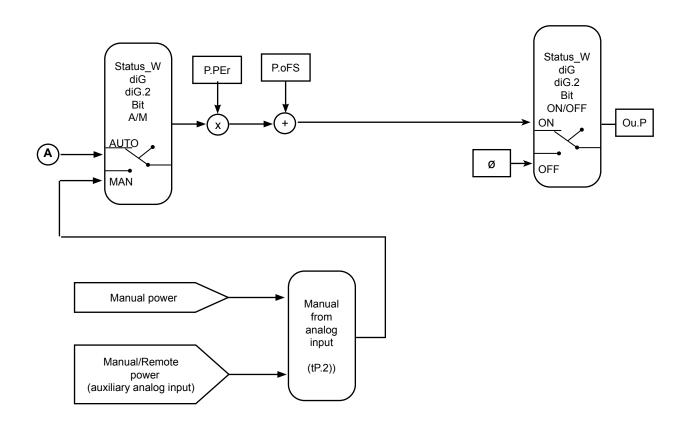
R/W

OUT 1 (Heat) cycle time

OUT 2 (Cool) cycle time

2 132 - 471 Ou.P R <u>Value of control outputs</u> (+Heat / -Cool)	(W – only in manual mode at address 252)
--	--


ADVANCED SETTINGS


152 9

159

39 484	c.SP	R/W	<u>Cooling setpoint</u> relative to heating setpoint	±25.0% f.s.	0,0
78	rSt	R/W	Manual reset (value added to PID input)	-999999 scale points	0
516	P.rS	R/W	Reset power (value added directly to PID output)	-100,0 100,0 %	0,0
79	A.rS	R/W	Antireset (limits integral action of PID))	09999 scale points	0
80	FFd	R/W	Feedforward (value added to PID output after processing)	-100,0 100,0 %	0,0
42 146	h.P.H	R/W	Maximum limit heating power	0.0100,0 %	100,0
254	h.P.L	R/W	Minimum limit heating power (not available for double heat/cool action)	0.0100,0 %	0,0
43	c.P.H	R/W	Maximum limit cooling power	0.0100,0 %	100,0
255	c.P.L	R/W	Minimum limit cooling power (not available for double heat/cool action)	0.0100,0 %	0,0
	1				
765	P.PEr	R/W	Percentage of output power	0.0200.0 %	100.0
766	P.oFS	R/W	Offset of output power	-100.0100.0 %	0.0

FUNCTIONAL DIAGRAM

AUTOMATIC / MANUAL CONTROL

By means of the digital input function you can set the controller in MAN (manual) and set the control output to a constant value changeable by means of communication.

When returning to AUTO (automatic), if the variable is within the proportional band, switching is bumpless.

2 132 - 471	Ou.P	R	Value of control outputs (+Heat / -Cool)	(W – only in manual mode at address	252)	
140	diG.	R/W	Digital input function	See: Table of digital input functions		0
618	dIG.2	R/W	Digital input function 2			0
1 bit	AUTO/MAN	R/W	OFF = Automatic ON =Manual			
305		R/W	Instrument state	See: Table of instrument settings		

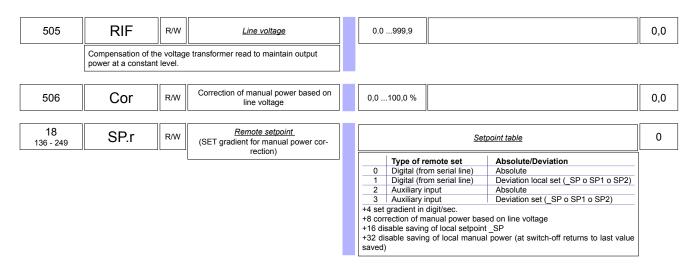
HOLD FUNCTION

The process variable value and the setpoints remain "frozen" for the time the digital input is active.

By activating the digital input with the Hold function when the variable is at values below the setpoint, a setpoint memory reset de-energizes all energized relays and resets all memory latches.

14	o di(3. R/W	Digital input function	See: Table of digital input functions	0
61	8 dlG	6.2 R/W	Digital input function 2		0
64 bit	HOLD	R/W	OFF = Disable hold ON = Enable hold		

MANUAL POWER CORRECTION


With this function (available on models with CV diagnostics option), you can run a correction of power delivered in manual based on the reference line voltage (riF). The % value of the (Cor) is freely settable and acts in inverse proportion. The function is activated/deactivated by means of parameter SP.r.

Example: with the following settings: Cor = 10%; riF = 380; SP.r = value + 8; instrument in manual; line voltage 380 VAC, manual power set at 50%, following a 10% increase in line voltage, 380V + 10% (380V) = 418V, there is a decrease in set manual power equal to the same % of change: 50% - 10% (50%) = 45%.

To use this function, the controller must have a CT (current transformer) and a VT (voltage transformer).

N.B.: the % change in manual power is limited to the value set in parameter "Cor".

The maximum manual power correction is limited to ± 65%.

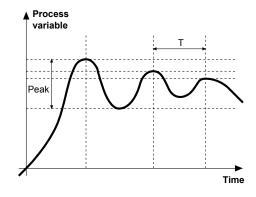
MANUAL TUNING

A) Enter the setpoint at its working value.

B) Set the proportional band at 0.1% (with on-off type setting).

C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure:

 $\mathbf{D})$ The PID parameters are calculated as follows: Proportional band


(V max - V min) is the scale range.

Integral time It = 1,5 x T

Derivative time dt = It/4

E) Switch the controller to manual, set the calculated parameters (activate the PID control by setting a cycle time for relay outputs, if any), switch to automatic.

F) To assess parameter optimization, change the setpoint value if possible and check temporary behavior. If oscillation persists, increase the value of the proportional band; if response is too slow, decrease the value.

See: CONTROL - PID Parameters

AUTOTUNING

Enabling the autotuning function blocks the settings of the *PID* parameters.

Autotuning continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0% of the proportional band. It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint. The calculated parameters are not saved; if the instrument is switched off the controller resumes with the parameters programmed before autotuning was enabled. Autotuning terminates the procedures with switching to manual.

Enabling the autotuning function blocks the settings of the PID parameters.

It can be two types: continuous or one shot.

Continuous autotuning is enabled with parameter Stu (values 1, 3, 5); it continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0% of the proportional band.

It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint.

The calculated parameters are not saved if the instrument is switched off, in case of switching to manual or disabling the code in configuration, and controller resumes with the parameters programmed before autotuning was enabled.

The calculated parameters are saved when the function is enabled via digital input or via A/M key (start /stop) at stop.

One-shot autotuning can be activated manually or automatically with parameter Stu (as can be seen on the table, the values to be set depend on enabling of Selftuning or Softstart).

It is useful for calculating PID parameters when the system is in the vicinity of the setpoint; it produces a variation on the control output of a maximum of \pm 100% of the current control power limited by h.PH - h.PL (heat), c.PH - c.PL (cool) and assesses the effects in overshoot over time. The calculated parameters are saved.

Manual activation (code Stu = 8, 10, 12) by setting the parameter directly or via digital input or key. Automatic activation (code Stu = 24, 26, 28 with error range of 0.5%) when the PV-SP error exceeds the defined range (programmable at 0.5%, 1%, 2%, 4% of full scale).

Activation is inhibited if PV <5% or PV >95% of input scale.

NB: at switch-on after selftuning, after switching to MANUAL, after software shutdown or after a setpoint change, automatic activation is inhibited for an interval equal to five times the integral time, with a minimum of 5 minutes. An identical interval has to lapse after a one-shot run.

See: CONTROL - PID Parameters

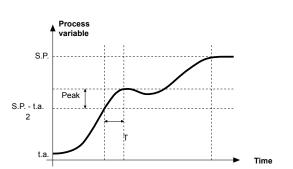
S.tu	R/W	Enable selftuning. autotuning, softstart		Selftuning, a	autotuning, softstart ta	<u>ble</u>
				Autotuning continuous	Selftuning	Softstart
			0	NO	NO	NO
			1	YES	NO	NO
			2	NO	YES	NO
			3	YES	YES	NO
			4	NO	NO	YES
			5	YES	NO	YES
			6	-	-	-
			7	-	-	-
			8*	WAIT	NO	NO
			9	GO	NO	NO
			10*	WAIT	YES	NO
			11	GO	YES	NO
			12*	WAIT	NO	YES
			13	GO	NO	YES

- +32 with automatic switching in GO if PV-SP > 1% f.s. +64 with automatic switching in GO if PV-SP > 2% f.s.

+128 with automatic switching in GO if PV-SP > 4% f.s
1 120 With automatic switching in GO ii F V-3F > 4 % 1.5

140	0	diG.	R/W	Digital input function	See: Table of digital input functions	0
618	8	dIG.2	R/W	Digital input 2 function		0
29 bit			R/W	OFF = Stop Autotuning ON = Start Autotuning		
	F	Read state				
28 bit	AUT	OTUNING STATE	R	OFF = Autotuning in Stop ON = Autotuning in Start		
68 bit				See: Table of digital input functions		
92 bit			R	OFF = Digital input 2 off ON = Digital input 2 on		
29	6		R	Autotuning and selftuning enable state (FLG_PID)	Autotuning and selftuning enable status table	
					bit 3 Selftuning on 6 Autotuning on	
30	5		R/W	Instrument state	Table of instrument settings	0
					bit	

SELFTUNING


This function is valid for single-action (either heat or cool) systems and for double-action (heat/cool) systems.

Selftuning is activated to calculate the best control parameters when starting the process. The variable (example: temperature) must be the one assumed at zero power (room temperature).

The controller supplies the maximum power set until reaching an intermediate point between starting value and the setpoint, then resets power. The <u>PID</u> parameters are calculated by evaluating superelongation and the time needed to reach the peak (**N.B.: This action is not considered in ON/OFF control**).

When the function is completed, it disengages automatically, and the control proceeds to reach the setpoint.

Selftuning

How to activate selftuning:

A. Activation at switch-on

- 1. Set the setpoint to the desired value.
- 2. Enable selftuning by setting parameter Stu to 2
- 3. Switch off the instrument.
- 4. Make sure that temperature is near room temperature.
- 5. Switch on the instrument.

B. Activation via serial command

1. Make sure that temperature is near room temperature.

0

- 2. Set the setpoint to the desired value.
- 3. Run the Start Selftuning command.

The procedure runs automatically until termination. At termination, the new PID parameters are saved: proportional band, integral and derivative times calculated for the current action (heat or cool). In case of double action (heat + cool), the parameters for the opposite action are calculated by maintaining the initial ratio between the parameters (example: Cpb = Hpb * K; where K = Cpb / Hpb when selftuning is started). At termination, the Stu code is automatically cancelled.

Note: The procedure does not start if temperature exceeds the setpoint for heat control, or is below the setpoint for cool control. In this case, the Stu code is not cancelled. It is advisable to enable the LEDs to signal selftuning state. By setting parameter Ld.St = 4 on the Hrd menu, the appropriate LED will light up or flash when selftuning is active.

See: CONTROLS - PID parameters

31 S.tu R/W Enable selftuning, autotuning, softstart

S.tu	Autotuning	Selftuning	Softstart
	continuous		
0	NO	NO	NO
1	YES	NO	NO
2	NO	YES	NO
3	YES	YES	NO
4	NO	NO	YES
5	YES	NO	YES
6	-	-	-
7	-	-	-
8*	WAIT	NO	NO
9	GO	NO	NO
10*	WAIT	YES	NO
11	GO	YES	NO
12*	WAIT	NO	YES
13	GO	NO	YES

- (*) +16 with automatic switching in GO if PV-SP > 0.5% f.s.
- +32 with automatic switching in GO if PV-SP > 1% f.s. +64 with automatic switching in GO if PV-SP > 2% f.s.
- +128 with automatic switching in GO if PV-SP > 4% f.s.

140	diG.	R/W	Function digital input	See: Table of digital input functions	0
618	dIG.2	R/W	Digital input 2 function		0
3 bit	SELFTUNING	R/W	OFF = Selftuning in Stop ON = Selftuning in Start		
305		R/W	Instrument state	See: Table of instrument settings	0

Read state

0 bit	SEL	FTUNING STATE	R	OFF = Selftuning in Stop ON = Selftuning in Start		
68 bit	STA	ATE OF DIGITAL INPUT 1	R	OFF = Digital input 1 off ON = Digital input 1 on	See: Table of digital input functions	
92 bit	STA	ATE OF DIGITAL INPUT 2	R	OFF = Digital input 2 off ON = Digital input 2 on		
29	6		R	Autotuning and selftuning enable state (FLG_PID)	Autotuning and selftuning enable status table	
					bit 3 Selftuning on 6 Autotuning on	

SOFTSTART

If enabled, this function partializes power based on a percentage of time elapsed since instrument switch-on compared to the set time of 0.0 ... 500.0 min ("SoF" parameter CFG phase). Softstart is an alternative to selftuning and is activated after each instrument switch-on. Softstart is reset when switching to manual.

31	S.tu	R/W	Enable selftuning, autotuning, softstart		Selftuning, a	autotuning, softstart ta	a <u>ble</u>	
				S.tu	Autotuning continuous	Selftuning	Softstart	
				0	NO	NO	NO	
				1	YES	NO	NO	
				2	NO	YES	NO	_
				3	YES	YES	NO	
				4	NO	NO	YES	-
				5	YES	NO	YES	
				6	-	-	-	
				7	-	-	-	
				8*	WAIT	NO	NO	_
				9	GO	NO	NO	_
				10*	WAIT	YES	NO	
				11	GO	YES	NO	
				12*	WAIT	NO	YES	
				13	GO	NO	YES	
				+64 with au	tomatic switching in	GO if PV-SP > 1% f.s GO if PV-SP > 2% f.s n GO if PV-SP > 4% f.		
263	SP.S	R/W	<u>Softstart setpoint</u> (preheating hot runners)					
264	So.P	R/W	Softstart power (preheating hot runners)	-100,00 100,0				
147	SoF	R/W	Softstart time	0.0500,0	min			
	∥ 501	''''	Contotant time	0.0000,0				11

Read state

63 STATE SOFTSTART	R	OFF = Softstart in Stop ON = Softstart in Start
--------------------	---	--

START MODE

699	P.On.t	R/W	Start modes at Power-On	Tabella stato di abilitazione autotuning e selftuning	0
				0* Function at previous state 1 Software shutdown 2 Software startup (*) digital input states always have priority	

SOFTWARE SHUTDOWN

Running the software shutdown procedure causes the following:

- 1) Reset of Autotuning, Selftuning and Softstart.
- 2) Digital input (if present) enabled only if assigned to SW shutdown function.
- 3) In case of switch-on after SW shutdown, any ramp for the set (set gradient) starts from the PV.
- 4) Outputs OFF: except for rL.4 and rL.6 which are forced ON.
- 5) Reset of HB alarm.
- 6) Reset of LBA alarm.
- 7) The Heat and Cool bit on the state word STATUS STRUMENTO and POWER are reset.
- 8) At shutdown, the current power is saved. At switch-on, integral power is recalculated as the difference between saved power and proportional power; this calculation is defined as "desaturation at switch-on."
- 9) The state of alarms (AL1...AL4, ALHBTA1...ALHBTA3) is reset.

140)	diG.	R/W	Digital input function	See: Table of digital input functions	
618	3	dIG.2	R/W	Digital input 2 function		0
11 bit		TWARE LAUNCH/ SHUTDOWN	R/W	OFF = On ON =Off		
700)	OFF.t	R/W	Modes at software shutdown	Table of software shutdown methods	0
	R	Read state			0 Outputs rL.1- rL.2 - rL.3 - rL.5 = OFF Outputs rL.4 - rL.6 = ON Alarms AL.1 - AL.2 - AL.3 - AL.4 disabled 1 Outputs rL.1- rL.2 - rL.3 - rL.5 = OFF Outputs rL.4 - rL.6 = ON Alarms AL.1 - AL.2 - AL.3 - AL.4 enabled +16 Restart of the Softstart at the switch-on software (ON Software)	
68 bit	ST	ATE of DIGITAL INPUT 1	R	OFF = Digital input 1 off ON = Digital input 1 on		
92 bit	ST	ATE of DIGITAL INPUT 2	R	OFF = Digital input 2 off ON = Digital input 2 on		
305	5		R/W	Instrument state	See: Table of instrument settings	0

HOT RUNNERS CONTROL

With the following parameters, you can perform a specific control for the hot runners (hot.runners).

The main functions are:

FAULT ACTION POWER

You can decide what power to supply in case of broken probe.

FAP is the reference power for parameter FAP.

Average power is the average power calculated in the last 300 sec.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.

265	Hot	R/W	Select hot runner functions

				JL
	Enable hot runners	Fault action power if PV is not stabilized	Enable preheating softstart]
	not runners	not stabilized	preneating solistait	
Λ		EV D		

	Enable hot runners	power if PV is not stabilized	Enable preheating softstart				
0		FA.P					
1	X	Average power					
2		FA.P					
3	X	FA.P					
4		FA.P	X				
5	X	Average power	X				
6		FA.P	X				
7	X	FA.P	X				
+8 ena	+8 enable GS.2						

See: Hot runners table - Setpoint Settings

FA.P – see alarm for probe in short or connection error (SBR-ERR)

	228	FA.P	R/W	Fault action power (supplied in conditions of broken probe)		-100,0100,0 %	
--	-----	------	-----	---	--	---------------	--

Read state

26	STATE OF HB ALARM	R	OFF = Alarm off
bit	OR POWER_FAULT		ON = Alarm on
80	State of power alarm (hot runners)	R	

POWER ALARM

The alarm signals any power changes (OuP) after the <u>process variable</u> (PV) has stabilized on the setpoint (SP). The time beyond which the process variable is considered stable is 300 sec (always on with hot runners).

The reference power update take place only at switch-on or after a setpoint change.

If the process variable leaves the stabilization band after the first stabilization, this does not influence the alarm. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left$

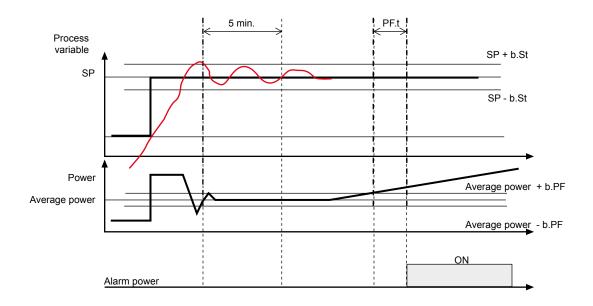
In case of SBR:

- if the PV has not yet stabilized, either the average power over the last 5 minutes or FAP power is supplied (depending on the setting of the HOT parameter).
- if the PV has stabilized the average power over the last 5 minutes is supplied.

Function:

If necessary, assign an output (rL.2...6) for the power alarm.

Set the band (b.ST) within which the process variable is considered stable after 300 sec. have elapsed.

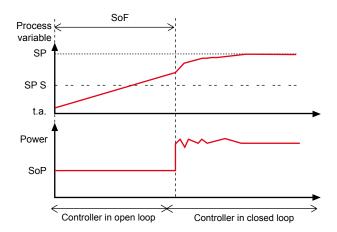

Set the band (b.PF) outside which the alarm is activated after time PF.t has elapsed.

The reference power is the active power after 300 sec. have elapsed.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

0,0

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.


The parameters for alarm power are:

261	b.St	R/W	<u>Stability band</u> (hot runners alarm power function)	0,0 100,0 % f.s.	0,0
262	b.PF	R/W	Alarm power band (hot runners alarm power function)	0,0100,0 %	0,0
260	Pf.t	R/W	Delay time for alarm power activation (hot runners)	0999 sec	0
		,		-1	
160	rL.1	R/W	Allocation of reference signal	See: Generic alarms –Table of reference signals	0
163	rL.2	R/W	Allocation of reference signal		1
		,			
166	rL.3	R/W	Allocation of reference signal - OR Output		2
170	rL.4	R/W	Allocation of reference signal - AND Output		35
		1			
171	rL.5	R/W	Allocation of reference signal - OR Output		4
172	rL.6	R/W	Allocation of reference signal - AND Output		160

SOFTSTART FOR PREHEATING

This function lets you deliver a settable power (So.P) for time (SoF), after which normal control is resumed by means of PID control.

Activation is only at switch-on, with manual-automatic switching during Softstart (the time restarts from 0), and if the process variable is below setpoint SP.S.

265 Hot	R/W	Select hot runner functions
---------	-----	-----------------------------

	Enable hot runners	Fault action power if PV is not stabilized	Enable preheating softstart			
0		FA.P				
1	X	Average power				
2		FA.P				
3	X	FA.P				
4		FA.P	X			
5	X	Average power	X			
6		FA.P	X			
7	X	FA.P	X			

263	SP.S	R/W	<u>Softstart setpoint</u> (preheating of hot runners)		0
264	So.P	R/W	Softstart power (preheating of hot runners)	-100,00 100,0 %	0,0
147	SoF	R/W	Softstart time	0.0500,0 min	0,0

Read state

63 bit	STATE OF SOFTSTART	R	OFF = Softstart in Stop ON = Softstart in Start
-----------	--------------------	---	--

HEATING OUTPUT (Fast cycle)

For outputs rL.1 (Out 1) and rL.2 (Out 2) you can set a fast cycle time (0.1 ... 20 sec) by setting the parameter to 64 (Heat) or 65 (Cool).

160	rL.1	R/W	Allocation of reference signal	See: Generic alarms -Table of reference signals	0	
163	rL.2	R/W	Allocation of reference signal		1	

POWER CONTROL

SSR CONTROL MODES

The following models are available:

GFX4 30 kW with full scale 16A in all four zones GFX4 60 kW with full scale 32A in all four zones

GFX4 80 kW with full scale 40A in all four zones, 57A for single zone

There are two power control modes,

- with settable cycle time (Ex: Ct.1 = 2sec if power Out.P = 50,0% output on for 1 second and output off for 1 second)
- with variable cycle time with power delivery optimised in packets with minimum duration of 20ms (GTT function) (Ex: Ct.1 = 0 if power Out.P = 50,0% output on for 20ms and output off for 20ms).

In the first case, you can set the cycle time with two different resolutions, in seconds or in tenths of a second, based on the type of heating (heat) or cooling (cool) function assigned to outputs rL1 and rL2.

It is advisable to use short cycle times (< 2-3 sec.) in case of control by means of solid state devices (SSR).

HEURISTIC Control power

It is useful to be able to limit the delivery of total power to the loads in order to avoid input peaks from the single-phase power line.

This condition occurs during switch-on phases when the machine is cold; the demand for heating power is 100% until temperatures near the setpoint are reached. It is also useful to avoid simultaneity of conduction when there is ON-OFF modulation for temperature maintenance.

The cycle time must be identical for all zones; the power percentage for each zone is limited to that necessary to maintain current within set limits.

This function acts by enabling the control to search for the most appropriate input combinations.

Example 1:

4 loads 380V- 32A (zone 1), 16A (zone 2), 25A (zone 3), 40A (zone 4)

(maximum current is 113A in case of simultaneity of conduction).

Current limit I.HEU=50A.

The following combinations of conduction are possible:

(to define the number of combinations, remember that the combinations without repetitions are = n! / (k!*(n-k)!))

11+12 = 48A

11+13 = 57A

11+14 = 72A

12+13 = 41A

12+14 = 56A

13+14 = 65A

11+12+13 = 73A

11+12+14 = 88A

12+13+14 = 81A

11+13+14 = 97A

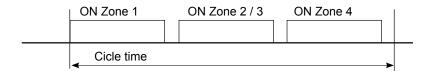
11+12+13+14 = 113A

The combination corresponding to current values below the limit value are:

11+12 = 48A

12+13 = 41A

The one with lower current is given by zone 2 and zone 3.


In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit. The time distribution for activation of the zones is calculated at the start of each cycle:

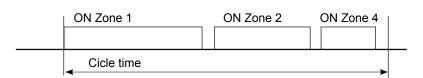
Ptot = P1+ P2 (if P2>P3) + P3 (if P3>P2) + P4 Simultaneity is allowed for zones 2 and 3.

If P1= 100%, P2= 100%, P3= 100%, P4= 100%

Ptot=300%; since Ptot>100%, the conduction time of the zone x is obtained by Px * (100/Ptot)

P1,2,3,4 delivered = 100%*0.33 = 33%

If P1= 100%, P2= 50%, P3= 0%, P4= 25%


Ptot=175%; since Ptot>100%, the conduction time of the zone x is obtained by Px * (100/Ptot)

P1 delivered = 100%*0.57 = 57%

P2 delivered = 50%*0.57 = 28.5%

P3 delivered = 0%*0.57 = 0%

P4 delivered = 25%*0.57 = 14.2%

680	Hd.3	R/W	Enable heuristic power control		<u>Tak</u>	ole for enabling he	ıristic power		0
				0	ZONE 1	ZONE 2	ZONE 3	ZONE 4	
				3	Х	Х			
				5	Х		X		
				6		Х	X		
				7	X	X	X		
				9	X			X	
				10		X		X	
				11	X	Х		X	
NOTE: Only for	CEV4 with CTa proof	nt and	outputs OUT1OUT4 with slow cycle time	12			X	X	
	HEAT or all COOL.	iii aiiu t	outputs OOTTOOT4 with slow cycle time	13	Х	V	X	X	
		ust he c	onnected to outputs OUT1OUT4.	14 15	X	X	X	X	
6466 61 61 71			simosta to dapate commission in	13			^	^]
681	I.HEU	R/W	Maximum current for heuristic power control	Ь	leuristic power ta	nble			0,0
				0,0 12 0,0 16	1,0 for GFX4 30 I 28,0 for GFX4 60 60,0 for GFX4 80 99,9 for GFXTER	kW kW			

HETEROGENEOUS power control

Available only for Mod. 80 kW 57A full scale

This function matches that of a thermal cutout that disconnects the load based on instantaneous input. The load is disconnected based on a preset priority.

Zone 1 has priority: in case of overload, zone 4 is disconnected, followed by zone 3, etc.

The maximum total controllable current in four zones for the 80 kW model is 160A.

The maximum current in a single zone is 57A.

Example: you can control three 50A loads and one 10A load without limits. With four 50A loads, if there is simultaneity, the load connected to zone 4 is disconnected.

	Hd.4	R/W	Enable heterogeneous power control		Table f	or enabling hetero	geneous power	
	•				ZONE 1	ZONE 2	ZONE 3	ZONA 4
				0				
				1	Х	V		
				2	X	X		
				3 4	Χ	Х	V	
				5	Х		X X	
				6	Λ	Х	X	
				7	Х	X	X	
				8				Х
				9	Х			Х
				10		X		X
				11	Χ	X		X
				12			X	X
ly for C	GFX4 with CTs.			13	X		X	Х
		must be co	onnected to outputs OUT1OUT4.	14		X	X	X
			·	15	Х	Х	X	X
3	I.HEt	R/W	Maximum current for heterogeneous power control	Heter	ogeneous powe	r table		
			·					
				0,0 12 0,0 16	,0 for GFX4 30 k 8,0 for GFX4 60 0,0 for GFX4 80 9,9 for GFXTER	kW kW		

VIRTUAL INSTRUMENT CONTROL

Virtual instrument control is activated by means of parameter hd.1.

By setting parameters S.In and S.Ou you can enable the writing of some parameters via serial line, set the value of inputs and the state of outputs.

You have to enable alarm setpoints AL1, ..., AL4 when write operations are continuous, and you don't have to keep the last value in eeprom.

Enabling the PV input means being able to exclude the local Tc or RTD acquisition and replace it with the value written in the register VALUE_F.

Enabling digital input IN lets you set the state of this input, for example to run MAN/AUTO switching with the writing of bit 7 in the register V_IN_OUT.

Likewise, you can set the on/off state of outputs OUT1, ..., OUT10 and of the LEDs by writing bits in the register $V\ IN\ OUT$.

191	hd.1	R/W	<u>Enable multiset</u> instrument control via serial	Table for multiset/ virtual instrument					0						
				0 1 2 3 +16 Fo	Enak Multi X X Heat/C	set		Enab ual inst X X tr only:	trumer		to cool	output			
224	S.In	R/W	Control inputs from serial	0	255										0
				Inpu	ts In	ıΤΑ	ln.2	-		ln.1	AL4	AL	.3	AL2	AL1
				Bit		7	6	5	5	4	3	2	!	1	0
225	S.Ou	R/W	Control outputs from serial	0	1023										0
				Outp	uts Ou	ut10 (Out9	Out8	Out7	Out6	Out5	Out4	Out3	Out2	Out1
				Bit		9	8	7	6	5	4	3	2	1	0
628	S.LI	R/W	Control LEDs and digital inputs from serial	0 .	1023										0
						Inpu 02	ut D1	O4	О3	02	LED O1	D2	D1	ER	RN
				Bit		9	8	7	6	5	4	3	2	1	0
·	·		<u>Table of virtual </u>	register add	<u>lresses</u>										

Parameter	bit	Resource enabled	Address of image register	Format	Name of register
S.In	0	Alarm setpoint AL1	341	word	AL1 RAM
	1	Alarm setpoint AL2	342	word	AL2 RAM
	2	Alarm setpoint AL3	343	word	AL3_RAM
	3	Alarm setpoint AL4	321	word	AL4_RAM
	4	Input In.1	347	word	VALUE_F
	6	Input In.2	348	word	VALAUX_F
	7	Input In.TA	685	word	VALTA_F
S.Ou	0	Output OUT 1	344	word, bit 0	V_IN_OUT
	1	Output OUT 2	344	word, bit 1	V_IN_OUT
	2	Output OUT 3	344	word, bit 2	V_IN_OUT
	3	Output OUT 4	344	word, bit 3	V_IN_OUT
	4	Output OUT 5 (relays)	344	word, bit 4	V_IN_OUT
	4	Output OUT 5 (continuous)	639	word	SERIAL_OUT5C*
	5	Output OUT 6 (relays)	344	word, bit 5	V_IN_OUT
	5	Output OUT 6 (continuous)	640	word	SERIAL_OUT6C*
	6	Output OUT 7 (relays)	344	word, bit 6	V_IN_OUT
	6	Output OUT 7 (continuous)	641	word	SERIAL_OUT7C*
	7	Output OUT 8 (relays)	344	word, bit 7	V_IN_OUT
	7	Output OUT 8 (continuous)	642	word	SERIAL_OUT8C*
	8	Output OUT 9	344	word, bit 8	V_IN_OUT
	9	Output OUT 10	344	word, bit 9	V_IN_OUT
S.LI	0	Led RN	351	word, bit 0	V_X_LEDS
	1	Led ER	351	word, bit 1	V_X_LEDS
	2	Led D1	351	word, bit 2	V_X_LEDS
	3	Led D2	351	word, bit 3	V_X_LEDS
	4	Led O1	351	word, bit 4	V_X_LEDS
	5	Led O2	351	word, bit 5	V_X_LEDS
	6	Led O3	351	word, bit 6	V_X_LEDS
	7	Led O4	351	word, bit 7	V_X_LEDS
	8	Input D1	344	word, bit 10	V_IN_OUT
	9	Input D2	344	word, bit 11	V_IN_OUT

^{*} the value to be set is in the range 0...1000 if the corresponding rL.x is configured "0" or in the range 0...-1000 if the corresponding rL.x is configured "1".

HW/SW INFORMATION

The following data registers can be used to identify the controller HW/SW and check its operation.

Software version code

	U. u		
85	Err	R	<u>Self-diagnosis</u> error code for main input
606	Er.2	R	<u>Self-diagnosis</u> error code for auxiliary input

R

UPd

122

	Table of main input errors							
0	0 No Error							
1	Lo (process variable value < Lo.S)							
2	Hi (process variable value > Hi.S)							
3	ERR [third wire interrupted for PT100 or input values below minimum							
	limits (ex. for TC with connection error)]							
4	SBR (probe interrupted or input values beyond maximum limits)							

190	C.Hd	R	Hardware configuration codes
-----	------	---	------------------------------

Table of hardware configuration codes bit Value indicated by GFX-OP (*) 0 = 1 OUTPUT COOL absent 0 = 1 OUTPUT COOL relay
= 1 OUTPUT COOL logic
= 1 OUTPUT COOL continuous 0...20mA / 0...10V
= 1 OUTPUT COOL triac 250Vac 1A = 1 GFX4 absent (GFXTERMO4 present) = 1 GFX4 30 kW = 1 GFX4 60 kW = 1 GFX4 80 kW 30 8 9 60 80 = 1 GFX4 without TA = 1 GFX4 with 1 TA = 1 GFX4 with 4TA 11 12 = 1 GFXTERMO4 without TA = 1 GFXTERMO4 with 4TA 13 0

 $(^\star)$ In correspondence to the SV value on the GFX-OP display, the digits indicate bit values as follows:

- THOUSANDS and HUNDREDS
 (Power GFX4 / GFXTERMO4) correspond to bits 6 to 9
- TENS (COOL outputs) correspond to bits 1 to 4 ONES (Number of CT) correspond to bits 10 to 14

508	C.Hd1	R	Hardware configuration codes 1
-----	-------	---	--------------------------------

		-	
bit			

= 1 FIELDBUS Eth1 (Ethernet IP)

		by GFX-OP (")
0	= 1 INPUT AUX absent	0
1	= 1 INPUT AUX TC / 60mV	1
2	-	
3	= 1 FIELDBUS ETH4 (ProfiNET)	
4	= 1 FIELDBUS ETH5	
5	= 1 FIELDBUS ETH6	
6	= 1 FIELDBUS absent	0
7	= 1 FIELDBUS Modbus	m
8	= 1 FIELDBUS Profibus	P
9	= 1 FIELDBUS CanOpen	С
10	= 1 FIELDBUS DeviceNet	d
11	= 1 FIELDBUS Ethernet	E
12	= 1 FIELDBUS Euromap66	С
13	= 1 FIELDBUS Eth3	3
14	= 1 FIELDBUS Eth2 (EtherCAT)	2

Table of hardware configuration codes1

- $(^\star)$ In correspondence to the SV value on the GFX-OP display, the digits indicate bit values as follows:
- TENS (auxiliary inputs) correspond to bits 0 to 1
- ONES (fieldbus interface) correspond to bits 6 to 15

693 697	Upd.F	R	Fieldbus software version
695	Cod.F	R	Fieldbus node
696	Bau.F	R	Fieldbus baudrate

	Profibus		Canopen
0	12.00 Mbit/s	0	1000 Kbit/s
1	6.00 Mbit/s	1	800 Kbit/s
2	3.00 Mbit/s	2	500 Kbit/s
3	1.50 Mbit/s	3	250 Kbit/s
4	500.00 Kbit/s	4	125 Kbit/s
5	187.50 Kbit/s	5	100 Kbit/s
6	93.75 Kbit/s	6	50 Kbit/s
7	45.45 Kbit/s	7	20 Kbit/s
8	19.20 Kbit/s	8	10 Kbit/s
	0.60 Khit/c		

D	evicenet
0	125 Kbit/s
1	250 Kbit/s
2	500 Kbit/s

Value indicated

	Etnernet
0	100 Mbit/s
1	10 Mbit/s

346		R	<u>Jumper state</u>	<u>Table of jumper state</u>	
(*) For GFX4 a	ind GFXTERMO4 wi	th CT, the	e 50/60Hz value is acquired automatically	bit 0 Jumper state S1 1 Jumper state S2 2 Jumper state S7-1: function modes 3 Jumper state S7-2: function modes 4 Jumper state S7-3: function modes 5 Jumper state S7-6: function modes 5 Jumper state S7-6: 60Hz 7 Jumper state S7-6: CFG forced 8 Jumper state S7-7: Simulation 4 GFX	
				S7-1 S7-2 S7-3 FUNCTION MODES	e
120		R	Manufact - Trade Mark (Gefran)	Constructor's name	5000
121		R	Device ID (GFX4)	Product ID	198
197	Ld.st	R/W	RN LED status function	Table of RN LED functions	16
619	Ld.2	R/W	ER LED status function	0 RUN 1 MAN/AUTO controller	12
620	Ld.3	R/W	Function of LED DI1	2 LOC / REM 3 HOLD 4 Selftuning on	6
621	Ld.4	R/W	Function of LED DI2	5 Autotuning on 6 Repeat digital input D1 7 Serial 1 dialog 8 State of OUT 2 zone 1	11
				9 Softstart running 10 Indication of SP1SP2 (SP1 with pilot input inactive and LED off) 11 Repeat digital input D2 12 Input in error (LO, Hi, Err, Sbr) 13 Serial 2 dialog + 16 LED flashing if active (code 8 excluded)	
622	Ld.s	R/W	Function of LED O1	<u>Table of OUT LED functions</u>	1
623	Ld.6	R/W	Function of LED O2	0 Disabled 1 Repetition of state OUT 1 2 Repetition of state OUT 2	2
624	Ld.7	R/W	Function of LED O3	Repetition of state OUT 3 Repetition of state OUT 4 Repetition of state OUT 5 Repetition of state OUT 6	3
625	Ld.8	R/W	Function of LED 04	7 Repetition of state OUT 7 8 Repetition of state OUT 8 9 Repetition of state OUT 9 10 Repetition of state OUT 10 + 16 LED flashing if active	4

EXCEPTIONS:

- If diagnostics has been activated (parameters Hb.F and hd.2) and an alarm is active, the red ER error LED and the yellow OX output LED for the zone with the alarm will flash in sync.
 - In case of an OVER_HEAT (STATUS_INSTRUMENT 4 bit1) alarm, the red ER error LED will flash.

305	R/W	Current instrument state (STATUS_W)	Table of instrument settings	0	,
698	R	Instrument state saved in eeprom (STATUS_W_EEP)	bit		

467	R	Instrument state	Table of instrument state
			bit 0
469	R	Instrument state 1	Table of instrument state 1
			bit 0
632	R	Instrument state 2	Table of instrument state 2
			bit 0
633	R	Instrument state 3	Table of instrument state 3
			bit 0 SSR_OPEN1 1 SSR_OPEN2 (only for 3-phase load) 2 SSR_OPEN3 (only for 3-phase load) 3 SSR_SHORT1 4 SSR_SHORT2 (only for 3-phase load) 5 SSR_SHORT3 (only for 3-phase load) 6 NO_VOLTAGE1 7 NO_VOLTAGE2 (only for 3-phase load) 8 NO_VOLTAGE3 (only for 3-phase load) 9 NO_CURRENT1 10 NO_CURRENT1 10 NO_CURRENT2 (only for 3-phase load) 11 NO_CURRENT3 (only for 3-phase load)
634	R	Instrument state 4	Table of instrument state 4

INSTRUMENT CONFIGURATION SHEET

PROGRAMMABLE PARAMETERS

	Definitio	n of	parameter	Note	Assigned value
INSTALLAT	ION OF MODE	BUS S	SERIAL NETWORK		
901	EEP.E	R/W	EEPROM saving		
46	Cod	R	Instrument identification code		-
45	bAu	R/W	Select Baudrate - Serial 1		
47	PAr	R/W	Select parity - Serial 1		
626	bAu.2	R/W	Select Baudrate - Serial 2		
627	PAr.2	R/W	Select parity - Serial 2		
MAIN INPU	Т				
400	tyP.	R/W	Probe, signal, enable, custom linearization and main input scale		
403	dP.S	R/W	Decimal point position for input scale		
401	Lo.S	R/W	Minimum scale limit for main input		
402	Hi.S	R/W	Maximum scale limit for main input		
519 23	oFS.	R/W	Main input offset correction		
0 470	P.V.	R	Read of process variable (PV) engineering value		-
85	Err	R	Self-diagnosis error code for main input		
24	Flt	R/W	low pass digital filter for input signal		
179	Fld	R/W	Digital filter on oscillations of input signal		
86	S.00	R/W	Engineering value attributed to Point 0 (minimum value of input scale)		
87	S.01	R/W	Engineering value attributed to Point 1		
118	S.32	R/W	Engineering value attributed to Point 32 (maximum value of input scale))		
293	S.33	R/W	Engineering value attributed to minimum value of the input scale		
294	S.34	R/W	Engineering value attributed to maximum value of the input scale.		
295	S.35	R/W	Engineering value of input signal corresponding to temperature of 50°C.		

CT AUXILIARY INPUT

405	H.tA1	R/W	Maximum scale limit of current trans- former CT input (phase 1)
413	H.tA2	R/W	Maximum scale limit of current trans- former CT input (phase 2)
414	H.tA3	R/W	Maximum scale limit of current trans- former CT input (phase 3)
220	o.tA1	R/W	Offset correction for current transformer CT input (phase 1)
415	o.tA2	R/W	Offset correction for current transformer CT input (phase 2)
416	o.tA3	R/W	Offset correction for current transformer CT input (phase 3)
227 473 - 139	I.tA1	R	Instantaneous value of CT input (phase 1)
490	I.tA2	R	Instantaneous value of CT input (phase 2)
491	I.tA3	R	Instantaneous value of CT input (phase 3)
468	I.1on	R	Value of CT input with active output (phase 1)
498	I.2on	R	Value of CT input with active output (phase 2)
499	I.3on	R	Value of CT input with active output (phase 3)
219	Ft.tA1	R/W	Digital filter for CT input (phases 1, 2 and 3)
661	dG.t	R/W	Sampling interval for CT input

VOLTAGE VALUE ON LOAD (Voltmeter)

410	Ft.tA1	R/W	Maximum scale limit of voltage trans- former VT input (phase 1)
417	H.tV2	R/W	Maximum scale limit of voltage transformer VT input (phase 2)
418	H.tV3	R/W	Maximum scale limit of voltage transformer VT input (phase 3)
411	oF.tV1	R/W	Offset correction of TV input (phase 1)
419	oF.tV2	R/W	Offset correction of TV input (phase 2)
420	oF.tV3	R/W	Offset correction of TV input (phase 3)
232 485	I.tV1	R	Value of voltmeter input (phase 1)
492	I.tV2	R	Value of voltmeter input (phase 2)
493	I.tV3	R	Value of voltmeter input (phase 3)
412	Ft.tV1	R/W	Digital filter for TV auxiliary input (phase 1, 2, 3)

AUXILIARY ANALOG INPUT (LIN/TC)

194	AI.2	R/W	Select type of auxiliary input sensor
181	tP.2	R/W	Definition of auxiliary analog input function
677	dP.2	R/W	Decimal point position for auxiliary input scale
404	LS.2	R/W	Minimum limit auxiliary input scale
603	HS.2	R/W	Maximum limit auxiliary input scale
605	oFS.2	R/W	Offset correction for auxiliary input
602	In.2	R	Value of auxiliary input
606	Er.2	R	Self-diagnosis error code of auxiliary input
604	Flt.2	R/W	Digital filter for auxiliary input

DIGITAL INPUTS

14	0	diG.	R/W	Function of digital input
61	8	dIG.2	R/W	Function of digital input 2
31	7		R	State of digital inputs INPUT DIG
68 bit	STA	ATE OF DIGITAL INPUT 1	R	OFF = Digital input 1 off ON = Digital input 1 on
92 bit	STA	ATE OF DIGITAL INPUT 2	R	OFF = Digital input 2 off ON = Digital input 2 on

21	5	A1.r	R/W	Select reference variable alarm 1
210	6	A2.r	R/W	Select reference variable alarm 2
21	7	A3.r	R/W	Select reference variable alarm 3
21	8	A4.r	R/W	Select reference variable alarm 4
12 475 -	177	AL.1	R/W	Setpoint alarm 1 (scale points)
13 476 -		AL.2	R/W	Setpoint alarm 2 (scale points)
14 52 - 4		AL.3	R/W	Setpoint alarm 3 (scale points)
58 480		AL.4	R/W	Setpoint alarm 4 (scale points)
27 187		HY.1	R/W	Hysteresis for alarm 1
30 188)	HY.2	R/W	Hysteresis for alarm 2
53 189		HY.3	R/W	Hysteresis for alarm 3
59)	HY.4	R/W	Hysteresis for alarm 4
400	6	A1.t	R/W	Alarm type 1
40	7	A2.t	R/W	Alarm type 2
408 54		A3.t	R/W	Alarm type 3
409	9	A4.t	R/W	Alarm type 4
25 20 - 28	5 - 142	Lo.L	R/W	Lowest settable limit SP, SP remote and absolute alarms
46 bit	AL	1 direct/inverse	R/W	
47 bit	AL1	absolute/relative	R/W	
48 bit	AL1 n	normal/symmetrical	R/W	
49 bit	AL1 di	sabled at switch on	R/W	
50 bit	AL	_1 with memory	R/W	
54 bit	AL	2 direct/inverse	R/W	
55 bit	AL2	absolute/relative	R/W	
56 bit	AL2 n	ormal/symmetrical	R/W	
57 bit	AL2 di	sabled at switch on	R/W	
58 bit	AL	.2 with memory	R/W	
36 bit	AL	.3 direct/inverse	R/W	
37 bit	AL3	absolute/relative	R/W	
38 bit		normal/symmetrical	R/W	
39 bit	AL3 di	sabled at switch on	R/W	
40 bit	AL	_3 with memory	R/W	

70 AL	_4 direct/inverse	R/W		
71 AL4	absolute/relative	R/W		
72				
bit AL41	normal/symmetrical	R/W		
bit AL4 ui	isabled at switch on	R/W		
74 bit Al	L4 with memory	R/W		
26 21 - 29 - 143	Hi.L	R/W	Highest settable limit SP, SP remote and absolute alarms	
195	AL.n	R/W	Select number of enabled alarms	
140	diG.	R/W	Digital input function	
618	dIG.2	R/W	Digital input function 2	
79 bit Re	eset alarm latch	R/W		
4 bit	STATE OF ALARM 1	R	OFF = Alarm off ON = Alarm on	
5 bit	STATE OF ALARM 2	R	OFF = Alarm off ON = Alarm on	
62 bit	STATE OF ALARM 3	R	OFF = Alarm off ON = Alarm on	
69 bit	STATE OF ALARM 4	R	OFF = Alarm off ON = Alarm on	
318		R	States of alarm ALSTATE IRQ	
BA ALARN	/ (Loop Break	Alarm	ı)	
195	AL.n	R/W	Select number of enabled alarms	
44	Lb.t	R/W	Delay time for LBA alarm activation	
119	Lb.p	R/W	Limit of supplied power in presence of LBA alarm	
81 Re	eset LBA alarm	R/W		
8 STAT	E OF LBA ALARM	R	OFF = LBA off ON = LBA alarm on	
IB ALARM	(Heater Break	Alarr	m)	
195	AL.n	R/W	Select number of enabled alarms	
57	Hb.f	R/W	HB alarm function	
56	Hb.T	R/W	Delay time for HB alarm activation	
55	A.Hb	R/W	HB alarm setpoint (ammeter input scale points - Phase 1)	
502	A.Hb2	R/W	HB alarm setpoint (ammeter input scale points - Phase 2)	
503	A.Hb3	R/W	HB alarm setpoint (ammeter input scale	
26 STATE	E OF HB ALARM or	R	points - Phase 3) OFF = Alarm off	
	OWER_FAULT ate of HB alarm		ON = Alarm on	
bit	phase 1TA	R		
bit	ate of HB alarm phase 2TA	R		
78 Sta	ate of HB alarm phase 3TA	R		
504		R	States of alarm HB ALSTATE_HB	
504			(for 3-phase loads)	

ALARM SBR - ERR (Probe in short or connection error)

229	9	REL	R/W	Fault action (in case of broken probe) Sbr, Err Only for main input	
228	8	FA.P	R/W	Fault action power (supplied in condition of broken probe)	
85	i	Err	R	Self-diagnosis error code for main input	
9 bit	STATE	OF INPUT IN SBR	R	OFF = - ON = Input in SBR	

Power Fault ALARMS (SSR SHORT, NO VOLTAGE, SSR, OPEN and NO CURRENT)

		, , , , , , , , , , , , , , , , , , ,		101(1, 1 10_ 1021) (02, 001(, 1
66	60	hd.2	R/W	Enable POWER_FAULT alarms
66	51	dG.t	R/W	Refresh rate In.TA - (only for GFX4 1TA)
66	52	dG.F	R/W	Filter in time for NO_VOLTAGE, SSR_OPEN and NO_CURRENT alarms (GFX4-1TA excluded)
66	3	dG.P	R/W	Min. acquisition power In.TA and for NO_CURRENT (only for GFX4 1TA)
105 bit	SHOR	SSR_OPEN /SSR_ T / NO_VOLTAGE / CURRENT alarms	R/W	
93 bit			R	
94 bit		State of alarm	R	

	NO_CURRENT alarms		
93 bit	State of alarm SSR_OPEN phase 1	R	
94 bit	State of alarm SSR_OPEN phase 2	R	
95 bit	State of alarm SSR_OPEN phase 3	R	
96 bit	State of alarm SSR_SHORT phase 1	R	
97 bit	State of alarm SSR_SHORT phasee 2	R	
98 bit	State of alarm SSR_SHORT phase 3	R	
99 bit	State of alarm NO_VOLTAGE phase 1	R	
100 bit	State of alarm NO_VOLTAGE phase 2	R	
101 bit	State of alarm NO_VOLTAGE phase 3	R	
102 bit	State of alarm NO_CURRENT phase 1	R	
103 bit	State of alarm NO_CURRENT phase 2	R	
104 bit	State of alarm NO CURRENT phase 3	R	

ALARM due to overload

655	R	INPTC
675	R	INPTC_DER

OUTPUTS

160	0	rL.1	R/W	Allocation of reference signal
163	3	rL.2	R/W	Allocation of reference signal
166	6	rL.3	R/W	Allocation of reference signal
170	0	rL.4	R/W	Allocation of reference signal
17 ⁻	1	rL.5	R/W	Allocation of reference signal
172	2	rL.6	R/W	Allocation of reference signal
308 319	8		R	State of outputs rL.x MASKOUT
12 bit		STATE rL.1	R	OFF = Output off ON = Output on
13 bit		STATE rL.2	R	OFF = Output off ON = Output on
14 bit		STATE rL.3	R	OFF = Output off ON = Output on
15 bit		STATE rL.4	R	OFF = Output off ON = Output on
16 bit		STATE rL.5	R	OFF = Output off ON = Output on
17 bit		STATE rL.6	R	OFF = Output off ON = Output on
60	7	out.1	R/W	Allocation of physical output OUT 1
608	8	out.2	R/W	Allocation of physical output OUT 2
609	9	out.3	R/W	Allocation of physical output OUT 3
610	0	out.4	R/W	Allocation of physical output OUT 4
61	1	out.5	R/W	Allocation of physical output OUT 5
612	2	out.6	R/W	Allocation of physical output OUT 6
613	3	out.7	R/W	Allocation of physical output OUT 7
614	4	out.8	R/W	Allocation of physical output OUT 8
61	5	out.9	R/W	Allocation of physical output OUT 9
616	6	out.10	R/W	Allocation of physical output OUT 10
82 bit	Stat	e of output OUT1	R	
83 bit	Stat	e of output OUT2	R	
84 bit	Stat	e of output OUT3	R	
85 bit	Stat	e of output OUT4	R	
86		e of output OUT5	R	
87		e of output OUT6	R	
bit 88		e of output OUT7	R	
bit 89		e of output OUT8	R	
90		e of output OUT9	R	
91		e of output OUT10	R	
bit		<u> </u>		

SETPOINT SETTINGS

138 16 - 472	_SP	R/W	Local setpoint	
181	tP.2	R/W	Auxiliary analog input function	
18 136 - 249	SP.r	R/W	Remote setpoint (SET Gradient for manual power correction)	
25 20 - 28 - 142	Lo.L	R/W	Lowest settable limit SP, SP remote and absolute alarms	t
26 21 - 29 - 143	Hi.L	R/W	Highest settable limit SP, SP remote and absolute alarms	d
10 bit LO	CAL / REMOTE	R/W	OFF = Enable local setpoint ON = Enable remote setpoint	
305		R/W	Instrument state	
1 137 - 481	SPA	R	Active setpoint	
4		R	Deviation (SPA - PV)	

SETPOINT CONTROL

234 22	G.SP	R/W	Set Gradient	
259	G.S2	R/W	Set Gradient for SP2	
265	Hot	R/W	Select hot runner functions	
191	hd.1	R/W	Enable multiset instrument control via serial	
230 482	SP.1	R/W	Setpoint 1	
231 483	SP.2	R/W	Setpoint 2	
140	diG.	R/W	Digital input function	
618	dlG.2	R/W	Digital input function 2	
75 bit	SELECT SP1 / SP2	R/W	OFF = Select SP1 ON = Select SP2	
305		R/W	Instrument state	

PID HEAT/ COOL CONTROL

902	APP.t	R/W	Application type
617	SPU	R/W	Enable zone process variable
180	Ctr	R/W	Control type
5 148 - 149	h.Pb	R/W	Proportional band for heating or hysteresis ON/OFF
7 150	h.lt	R/W	Integral heating time
8 151	h.dt	R/W	Derivative heating time
6	c.Pb	R/W	Proportional band for cooling or hysteresis ON/OFF
76	c.lt	R/W	Integral cooling time
77	c.dt	R/W	Derivative cooling time
513	C.ME	R/W	Select cooling fluid
152 9	Ct.1	R/W	Cycle time OUT 1 (Heat)
159	Ct.2	R/W	Cycle time OUT 2 (Cool)
2 132 - 471	Ou.P	R	Value control outputs (+Heat / -Cool)
39 484	c.SP	R/W	Cooling setpoint relative to heating setpoint
78	rSt	R/W	Manual reset (value added to PID input)
516	P.rS	R/W	Reset power (value added directly to PID output)
79	A.rS	R/W	Antireset (limits integral PID action)
80	FFd	R/W	Feedforward (value added to PID output after processing)
42 146	h.P.H	R/W	Maximum limit heating power
254	h.P.L	R/W	Min. limit heating power (not available for double action heat/cool)
43	c.P.H	R/W	Maximum limit cooling power
255	c.P.L	R/W	Min. limit cooling power (not available for double action heat/cool)
765	P.PEr	R/W	Percentage of output power
	IL		

AUTOMATIC/MANUAL CONTROL

2 132 - 471	Ou.P	R	Value control outputs (+Heat / -Cool)	
140	diG.	R/W	Digital input function	
618	dlG.2	R/W	Digital input function 2	
1 bit	AUTO/MAN	R/W	OFF = Automatic ON = Manual	
305		R/W	Instrument state	

140	diG.	R/W	Digital input function
618	dlG.2	R/W	Digital input function 2
64 bit	HOLD	R/W	OFF = Disable hold ON = Enable hold
ANUAL P	OWER CORR	ECTIO	ON O
505	RIF	R/W	Line voltage
506	Cor	R/W	Manual power correction based on line voltage
18 136 - 249	SP.r	R/W	Remote setpoint (SET Gradient for manual power correction)
2	C/MANUAL C		Value control outputs
2 132 - 471	Ou.P	R	Value control outputs (+Heat / -Cool)
140	diG.	R/W	Digital input function
618	dlG.2	R/W	Digital input function 2
010	u.o.=		
1	AUTO/MAN	R/W	OFF = Automatic ON =Manual
1		R/W	
1 bit 305	AUTO/MAN		ON =Manual
1 bit 305	AUTO/MAN		ON =Manual
1 bit 305 OLD FUN	AUTO/MAN CTION	R/W	ON =Manual Instrument state
305 OLD FUN	AUTO/MAN CTION diG.	R/W	ON =Manual Instrument state Digital input function
305 OLD FUN 140 618	AUTO/MAN CTION diG. dIG.2 HOLD	R/W R/W R/W	ON =Manual Instrument state Digital input function Digital input function 2 OFF = hold off ON = hold on
305 OLD FUN 140 618 64 bit	AUTO/MAN CTION diG. dIG.2 HOLD OWER CORR	R/W R/W R/W	ON =Manual Instrument state Digital input function Digital input function 2 OFF = hold off ON = hold on
305 OLD FUN 140 618	AUTO/MAN CTION diG. dIG.2 HOLD	R/W R/W R/W ECTIO	ON =Manual Instrument state Digital input function Digital input function 2 OFF = hold off ON = hold on

AUTO	IONII	NG			
31		S.tu	R/W	Enable selftuning, autotuning, softstart	
140	0	diG.	R/W	Digital input function	
618 dlG.2		R/W	Digital input function 2		
29 bit	Δ	AUTOTUNING	R/W	OFF = Stop Autotuning ON = Start Autotuning	
28 bit	AUT	OTUNING STATE	R	OFF = Autotuning in Stop ON = Autotuning in Start	
68 bit	D	OIGITAL INPUT STATE 1	R	OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	D	OIGITAL INPUT STATE 2	R	OFF = Digital input 2 off ON = Digital input 2 on	
29	6		R	Enable autotuning and selftuning state (FLG_PID)	
30	5		R/W	Instrument state	
SELFT	UNIN	IG			
31		S.tu	R/W	Enable selftuning,	
31			R/W	autotuning, softstart	
140	0	diG.	R/W	Digital input function	
618	8	dlG.2	R/W	Digital input function 2	
3 bit	5	SELFTUNING	R/W	OFF = Stop Selftuning ON = Start selftuning	
0 bit	SEL	FTUNING STATE	R	OFF = Selftuning in Stop ON = Selftuning in Start	
68 bit	D	OIGITAL INPUT STATE 1	R	OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	D	OIGITAL INPUT STATE 2	R	OFF = Digital input 2 off ON = Digital input 2 on	
29	6		R	Enable autotuning and selftuning state (FLG_PID)	
30	5		R/W	Instrument state	
SOFTS	STAR	Т			
31	ı	S.tu	R/W	Enable selftuning, autotuning, softstart	
26:		SP.S	R/W	Softstart setpoint	
26		So.P	R/W	(preheating hot runners) Softstart power (preheating hot runners)	
14		SoF	R/W	Softstart time	
629	9	P.SoF	R/W	Softstart time for phase	
630	0	P.S.Hi	R/W	Max. Softstart phase	
63	SOF	FTSTART STATE	R	OFF = Softstart in Stop ON = Softstart in Start	

AUTOTUNING |

SOFTWARE SHUTDOWN					
140	0	diG.	R/W	Digital input function	
618		dlG.2	R/W	Digital input function 2	
11 SOFTWARE ON/OFF		R/W	OFF = On ON =Off		
68 bit	D	IGITAL INPUT STATE 1	R	OFF = Digital input 1 off ON = Digital input 1 on	
92 DIGITAL INPUT STATE 2		R	OFF = Digital input 2 off ON = Digital input 2 on		
305			R/W	Instrument state	
FAULT	ACT	ION POWER			
26	5	Hot	R/W	Select hot runner functions	
228	8	FA.P	R/W	Fault action power (supplied in conditions of broken probe)	
26 bit		TE OF HB ALARM POWER_FAULT	R	OFF = Alarm off ON = Alarm on	
80		e of power alarm (hot runners)	R		
POWE	R AL	ARM			
26	1	b.St	R/W	Stability band (hot runners power alarm function)	
26:	2	b.PF	R/W	Power alarm band (hot runners power alarm function)	
26	0	Pf.t	R/W	Power alarm delay time (hot runners)	
16	0	rL.1	R/W	Allocation of reference signal	
16	3	rL.2	R/W	Allocation of reference signal	
16	6	rL.3	R/W	Allocation of reference signal - Output OR	
17	0	rL.4	R/W	Allocation of reference signal - Output AND	
17	1	rL.5	R/W	Allocation of reference signal - Output OR	
17	2	rL.6	R/W	Allocation of reference signal - Output AND	
PREHEATING SOFTSTART					
31		S.tu	R/W	Enable selftuning, autotuning, softstart	
26	3	SP.S	R/W	Softstart setpoint (preheating hot runners)	
26	4	So.P	R/W	Softstart power (preheating hot runners)	
147		SoF	R/W	Softstart time	
63 bit	STATI	E OF SOFTSTART	R	OFF = Softstart in Stop ON = Softstart in Start	

HEATING C	OUTPUT (fast o	cycle)		
160	rL.1	R/W	Allocation of reference signal	
163	rL.2	R/W	Allocation of reference signal	
HEURISTIC	power contro	l 📰		
680	Hd.3	R/W	Enable heuristic power control	
681	I.HEU	R/W	Maximum current for heuristic power control	
HETEROGE	ENEOUS powe	er con	trol	
682	Hd.4	R/W	Enable heterogeneous power control	
683	I.HEt	R/W	Maximum current for heterogeneous power control	
Virtual instru	ument control			
191	hd.1	R/W	Enable multiset instrument control via serial	
224	S.In	R/W	Control inputs from serial	
225	S.Ou	R/W	Control outputs from serial	
628	S.LI	R/W	Control LEDs and digital inputs from serial	

HW/SW DATA

122	UPd	R	Software version code
85	Err	R	Self-diagnosis error code for main input
606	Er.2	R	Self-diagnosis error code for auxiliary input
190	C.Hd	R	Hardware configuration codes
508	C.Hd1	R	Self-diagnosis error code for auxiliary input
693 697		R	Fieldbus software version
695		R	Fieldbus node
696		R	Fieldbus baudrate
346		R	State of jumper
120		R	Manufact - Trade Mark (Gefran)
121		R	Device ID (GFX4)
197	Ld.st	R/W	RN status LED function
619	Ld.2	R/W	ER status LED function
620	Ld.3	R/W	DI1 LED function
621	Ld.4	R/W	DI2 LED function
622	Ld.s	R/W	O1 LED function
623	Ld.6	R/W	O2 LED function
624	Ld.7	R/W	O3 LED function
625	Ld.8	R/W	O4 LED function
305		R/W	Instrument state
467		R	Instrument state
469		R	Instrument state 1
632		R	Instrument state 2
633		R	Instrument state 3
634		R	Instrument state 4

GEFRAN

GEFRAN spa

via Sebina, 74
25050 Provaglio d'Iseo (BS) Italy
Tel. +39 0309888.1
Fax +39 0309839063
info@gefran.com
http://www.gefran.com