Uniwat®

Concentric Butterfly Valves

www.comeval.es

CONTENTS

General Design Considerations	4
Codification	5
Design Attributes	6
Main Features	
Main Duties / Limits of use	
Options	
Flow Coefficients Kv Values	
Valve Torques	8
SERIES VF7U0	
Main Parts and Materials	9
Main Valve Parameters	
Solutions on Control Accesories and Actuation1	

Concentric Butterfly Valves - UNIWAT®

General Design Considerations

A butterfly valve is a type of flow control device, typically used to regulate a fluid flowing through a section of pipe. A flat circular plate (disc) is positioned in the centre of the pipe. The plate has a rod (shaft) through it connected to an actuator on the outside of the valve. Rotating the actuator turns the plate either parallel or perpendicular to the flow. Unlike a ball valve, the plate is always present within the flow, therefore a pressure drop is always induced in the flow regardless of valve position.

A butterfly valve is from a family of valves called quarter turn valves. The "butterfly" is a metal disc mounted on a rod. When the valve is closed, the disc is turned so that it completely blocks off the passageway. When the valve is fully open, the disc is rotated a quarter turn so that it allows unrestricted passage. The valve may also be opened incrementally to regulate flow thanks to the gradual interlocking notch.

Butterfly valves are of simple design, of light weight and volume and very effective on isolating lines for its quick and safe operation. Most of butterfly valves design are flangeless for installation between counter flanges what saves space, costs and maintenance.

There are two kind of flangeless butterfly valves:

Wafer Style Concentric Butterfly Valves: Wafer style is the more common one and is the least expensive one. The Wafer Style Concentric Butterfly valve is just about the standard. It is so common that no one even bothers to use the word "wafer" when ordering a butterfly valve. They take it for granted that if they order a butterfly valve, they will get a wafer style one. Wafer butterfly valves are installed between two flanges using bolts or studs and nuts. This type of installation, of course, makes it impossible to disconnect just one side of the piping system from the valve. That is where the lug style valve comes in.

Lug Style Butterfly Valves: Lug style valves are provided with tapered holes to fix threaded bolts in. This allows them to be installed into a system using two sets of bolts and no nuts. The valve is installed between two flanges using a separate set of bolts for each flange. This set-up permits either side of the piping system to be disconnected without distributing the other side.

Lug Style Butterfly Valves are used in dead end service and generally have a reduced pressure rating.

Valves can also be of dual flanged design; provided with integral flanges that are ready to be installed between flanges of the same standard. These are more bulky valves and usually required for large sizes and other styles of performance by the position of the shaft. (see next paragraph).

Other kind of valves by its nature of shaft design are as follows:

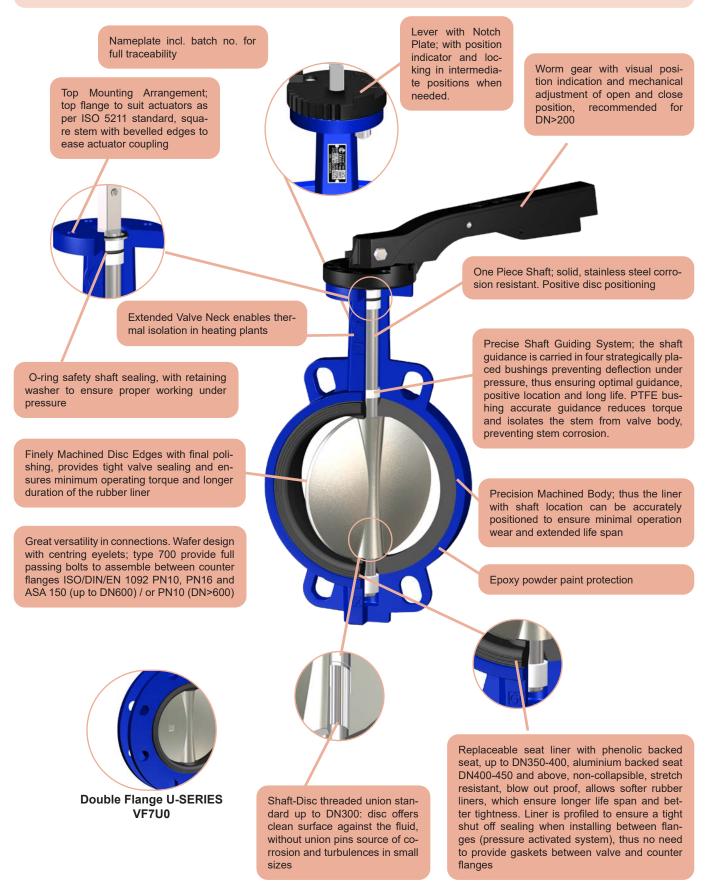
Concentric Design: This is the most common and simple design. The valve shaft is concentric to the disc. It is normally a resilient seated valve. Rotating the handle turns the plate either parallel or perpendicular to the flow of water, shutting off the flow

Double Eccentric Design: This design features a slight offset in the way the disc is positioned, which increases the valve's sealing ability and decreases its tendency to wear. It is normally used for throttling functions, larger sizes and / or metal seated valves.

Triple Offset Design: This design is the one offering the highest degree of performance. The shaft is totally off set from the central axis thus increasing the ability of the valve disc to close tightly at even high pressure. These valves are usually metal seated thus being used for high temperature too. These valves are usually operated by worm gear to achieve a slow closing.

Butter	fly valve with body material JL1040 (GG25)		Butterfly valve with other body material										
V F	7 0 0 <mark>P G E 0 0 0</mark> 0	5 0	V F	7 () ()	Ρ	G	B N	0	0	0	5	0
VF	: UNIWAT® butterfly valve identification		VF	: UNI	WAT®	butte	erfly va	alve i	den	tifica	tion		
דווח	ERFLY TYPE		BUTTE										
7U0	Concentric U type		7U0	Conce		U typ	е						
	JATION DEVICE		ACTUA			E							
P	With lever		P	With I									
R	With worm gear		R		Norm g	gear							
B	Bare shaft		В	Bare									
E	Electric actuator		E	Electr	ic actu	lator							
DISC			BODY										
G	Ductile iron JS1030 (GGG40)		G	Ductil	e iron	JS10)30 (G	GG4	10)				
I .	St. Steel CF8M (AISI 316)		А	Carbo	on Stee	el W	СВ						
В	AL-BZ		1	St. St	eel CF	-8M (AISI 3	316)					
F	Coated FEP		В	AL-BZ	Z								
Р	Coated PFA		U	St. St	eel 90	4L							
U	St. Steel 904L												
			DISC	-			/ .	/					
SEAT			G	Ductil					0)				
E	EPDM		I		eel CF	-8M (AISI	316)					
N	NBR		В	AL-BZ									
V	Viton		F										
S F	Silicon FEP		P U		ed PFA eel 90								
P	PFA		0	31. 31	eel 90	4L							
' H	Hypalon		SEAT										
			E	EPDN	Λ								
SPEC	CIAL CONNECTION		N	NBR									
00	No special connection		V	Viton									
16	PN16 for valves >DN300		S	Silico	n								
	connection, no design		vF	FEP									
,	~ ~		Р	PFA									
VALVI	E SIZE		н	Hypa	on								
050	DN50			-									
300	DN300		SPECI	AL COI	NNEC	TION	AND	DES	GIGN	1			
			00	No sp	ecial o	conn	ection						

050


300

DN50

DN300

Design Attributes

Concentric Butterfly Valves are quarter turn rotary valves, bidirectional, with rubber or fluoropolymer seat, for stopping or regulating the flow of the service fluid when necessary. A metal disc is positioned in the centre of the valve. The plate has a rod (stem) through it connected to an actuator device (handwheel, gear, etc.) on the outside of the valve. The valve closes by turning the disc clockwise and is open when the lever is parallel to the pipe. Valves are provided with epoxy paint against environmental aggression. They are of simple design, light weight and volume and offer a quick operation with full seat tightness, being widely used in many applications with significant savings in space and investment costs for installation.

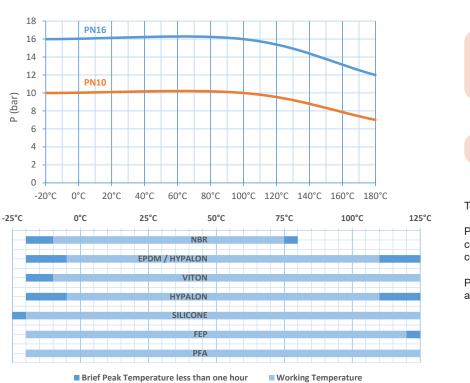
Main Features

Valve design: EN 593, EN 12516 & DIN 3840. Nominal Pressure: PN16 (DN25-DN300)/ PN10* (DN350-1200). For PTFE seat PN10 (DN40-600) * Option PN16 (DN350-1200) Face to face length: EN 558 S20 (DIN 3202 K1) SERIES VF7U0 Valve end connections: -VF7U0 Flanged to EN 1092-1/2 type 11/B PN16(DN150-300); PN10 (DN350-1200), option PN16 (DN350-1200) Top flange: ISO 5211 Marking: EN 19 Pressure Tests: EN 12266-1 Seat leakage rate: Rate A (full seat tightness in both directions) Outside epoxy coating protection blue color similar to RAL5002. Min. average thickness 150 microns Product compliant with Directive 2014/68/EU on Pressure Equipment (PED) and Machinery Directive 2006/42/EC

Main Duties / Limits of use

Liquids compatible with materials of construction, acc. to Directive 2014/68/EU, Annex II table 8 (liquids of group 1*) & table 9 (liquids of group 2*) up to category I

Low pressure steam & neutral gases of group 2*, acc. to Directive 2014/68/EU, Annex II table 7 up to category I


- Table 7:
 PS 16 bar DN25-200 (Art.4-Parr.3 DN25-50) PS 13 bar DN250
 Table 8:
 PS 16 bar DN25-125 (Art.4-Parr.3)

 PS 13 bar DN250
 PS 13 bar DN150
 PS 13 bar DN150

 PS 10 bar DN300-350
 PS 10 bar DN200-1200 (Art.4-Parr.3 DN200)

 PS 6 bar DN400-500
 Table 9:
 PS 16 bar DN25-300 (Art.4-Parr.3)

 PS 2,5 bar DN600-1200
 PS 10 bar DN350-1200
 PS 10 bar DN350-1200
- Questions referring to chemical resistance, please consult us Observe also pressure/temperature limits on diagrams under *Classification of fluids (group 1 or 2) acc. to Directive 2014/68/EU, Article 13

We recommend not to exceed maximum velocity as follows: PN10: 3 m/s PN16: 4 m/s

TSmax: 80°C for drinking water

Temperature ranges given just for reference.

Pressure-temperature rating, material compatibility and other parameters also to be considered for rubber selection.

Please consult our Technical Department for a particular application.

Options

Compliance with EN 1074-1/2, higher service pressure ratings and temperatures, other connections, other designs and approvals, limit switches, different actuation. Please consult us

Flow Coefficients Kv Values (m³/h)

DN				Openir	ng Angle	of the V	alve		
DN	10°	20°	30°	40 °	50°	60°	70 °	80°	90°
25	-	-	1,5	5	8,3	14	22	33	36
32	-	0,8	1,7	5,3	9,5	16	25	37	41
40	-	1,5	3,5	8	14	23	37	55	61
50	-	2,5	7	14	24	40	64	95	105
65	-	5	11	23	40	67	107	159	176
80	-	9	20	35	61	101	161	240	265
100	-	16	38	78	137	226	360	538	594
125	0,5	26	69	129	219	361	576	860	950
150	0,8	44	105	205	373	617	983	1468	1622
200	1,3	82	205	387	680	1124	1792	2676	2957
250	2,1	138	345	669	1084	1791	2855	4262	4711
300	3,7	210	534	1028	1639	2707	4318	6449	7126
350	5,5	305	750	1326	2347	3878	6184	9236	10205
400	7,4	388	935	1813	3208	5301	8454	12625	13950
450	9,7	550	1212	2370	4193	6929	11049	16500	18232
500	13	658	1595	2981	5275	8716	13900	20758	22937
600	20	962	2246	4431	7919	13083	20864	31158	34429
700	55	1233	2725	5105	9022	14906	23770	35499	39225
800	135	1719	3394	6367	10338	17081	27239	40905	44950
900	180	2475	4731	8631	13691	22620	36072	54165	59525
1000	250	3342	6443	11752	18642	30800	49116	73755	81050
1200	320	4715	8643	15155	24198	39980	63757	95741	105210

Valve Torques (Nm)

	Elastomeric seat					
DN	PN6	PN10	PN16			
25	8*		10			
32	8*		10			
40	10*		12			
50	14*		16			
65	22*		26			
80	29*		33			
100	43*		53			
125	66*		81			
150	94*		119			
200	161*		194			
250	256*		308			
300	283*	410*	595			
350	340*	475	969*			
400	500*	746	1307*			
450	780*	1112	1787*			
500	1120*	1356	2288*			
600	2120*	2468	3711*			
700	3400*	4908	5350*			
800	-	6462	-			
900	-	7886	-			
1000	-	13389	-			
1200 *Special construction	-	18833	-			

SERIES VF7U0

🚯 Comeval

A valve flow coefficient represents the standard flow rate which flows through the valve at a given opening, referred to preestablished conditions:

* Kv value is the volume of water at 20°C, in cubic meters per hour (m3/h), that will flow through the valve at a static pressure drop of 1 bar across the valve.

* Cv value is the volume of water at 60°F, in gallons per minute (gpm), that will flow through the valve at a static pressure drop of 1 psi across the valve.

Conversion from Kv to Cv can be roughly calculated by means of the following expression:

$Cv = Kv \times 1.17$

Flow rate through the valve with other liquids can be calculated with the following expressions (for gases please consult us): $Kv = q (SG / dp)^{1/2}$ where

q = water flow (m3/h)

SG = specific gravity (1 for water)

dp = pressure drop (bar)

$Cv = q (SG / dp)^{1/2}$ where

q = water flow (US gallons per minute)

SG = specific gravity (1 for water)

dp = pressure drop (psi)

It is common practice to size the valves on the basis of pipe DN for on off application. Nevertheless, Butterfly Valves used for control purpose should be calculated on the basis of operating conditions.

First step is to calculate the Kv values for the different working conditions and then choose the DN with such Kv values in the region of 20° to 70° valve opening angle.

COMEVAL Technical Department is at your disposal to help you sizing your system.

Remarks for Actuator Sizing:

The torque values given are for water or other non-viscous lubricating liquids at ambient temperature.

Recommended safety factor to be applied:

30-40% for double acting pneumatic actuators

30-50% for single acting pneumatic actuators and electric actuators

There are several factors that can increase above given values and should be taken into account for actuators sizing:

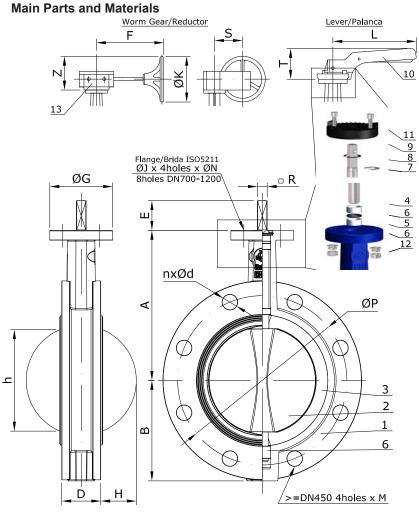
-For gases and dry medium (non lubricating), multiply above values by about 1,25-2 depending on application

-For viscous liquids increase above values depending on the liquid properties -For service conditions such as likelihood of seat swelling, or low and high temperature seat hardening, an additional safety factor should be considered.

There are three torques to be considered when selecting the proper actuator for a butterfly valve:

1) Seating Torque: The torque to displace a resilient seat and effect shutoff

2) Bearing Torque: The torque required to overcome friction forces on the valve shaft bearing surfaces during valve travel angle (about 30% of seating toraue)


3) Dynamic Torque: Due to fluid forces which tend to close the valve when the valve is partially open. This torque is due to the velocity of the fluid created by a differential pressure across the valve. Systems should be projected to avoid high velocities across the valve

Above given values are inclusive of the 3 torques if max. recommended velocities are not exceeded, the actuator selected must provide the calculated torque over its total opening and closing travel angle.

Information / restriction of technical rules need to be observed! Installation. Operating and Maintenance Manual can be downloaded at www.comeval.es

The engineer, designing a system or a plant, is responsable for the selection of the correct valve Product suitability must be verified, contact manufacturer for information

SERIES VF7U0

NO.	PART	MATERIAL
1	BODY*	Cast iron EN-JL1040 (GG25) Ductile iron EN-JS1030 (GGG40) St. steel CF8M / Steel WCB
2	DISC	Ductile iron EN-JS1030 (GGG40) Ni Plated / St. steel CF8M Al-Bz / St. steel 904L
3	LINER	NBR (VF7U0_N_) EPDM (VF7U0_E_) Viton (VF7U0_V_) Silicon (VF7U0_S_) HYPALON (VF7U0_H_)
4	STEM	St. steel AISI 420 (DN150-300) - St. steel AISI 431 (DN350-1200)
5	O-RING	NBR / EPDM
6	BUSHING	PTFE
7	WASHER	Steel
8	CIRCLIP	Steel
9	NOTCH PLATE	Aluminium
10	HAND LEVER	Aluminium / Ductile iron
11	BOLTS	Steel
12	NUTS	Steel
13	WORM GEAR	Ductile iron

* Body in cast iron JL1040 not suitable for DN350-1200 PN16 construction

Main Valve Parameters

iuni vu	ve Parar								
	D	1	150	200	250	300	350	400	450
		Α	215	241,5	280	300	340	360	390
MAIN DIMENSIONS		В	144	171	205	240	260	302	346
		D	56	60	68	78	78	102	114
		h	145	193,3	241,1	291,3	324,5	376,2	425,7
		ISO 5211	F07	F10	F12	F12	F12	F12	F16
		E	42	30	32	32	45	50	50
COUR	PLING	□R	14x14	17x17	22x22	27x27	27x27	27x27	30x30
DETAIL		ØG	90	125	150	150	150	150	210
		ØJ	70	102	125	125	125	125	165
		ØN	9	11	13	13	14	14	22
z		ØP	240	295	350	400	460	515	565
<u>0</u>	PN10	nxØd	8xØ22	8xØ22	12xØ22	12xØ22	16xØ22	16xØ28	16xØ28
VALVE VNECTI		Μ	-	-	-	-	-	-	24
IN N	PN16	ØP	240	295	355	410	470	525	585
VALVE CONNECTION		nxØd	8xØ22	12xØ22	12xØ26	12xØ26	16xØ26	16xØ30	16xØ30
0		М	-	-	-	-	-	-	27
		т	79	40	40	37	-	-	-
LEV	ER**	L	278	355	507	507	-	-	-
		Approx. Weight	19	30	54	68	-	-	-
		F	156	223	223	223	223	270	270
		S	42	70	70	80	80	114	114
WORN	IGEAR	Z	168	195	195	195	195	208	258
		ØK	250	300	300	300	300	400	400
		Approx. Weight	23,5	38,5	62,5	76,0	106,5	149,0	178,0
* We do not recommend the use of valves with PTFE liner and lever for DN200-DN300 Dimensions in mm subject to manufacturing tolerance / Weights								e / Weights in kg	

We do not recommend the use of valves with rubber liner an lever for DN300

Information / restriction of technical rules need to be observed!

The engineer, designing a system or a plant, is responsable for the selection of the correct valve Installation, Operating and Maintenance Manual can be downloaded at www.comeval.es Product suitability must be verified, contact manufacturer for information

SERIES VF7U0

Main Valve Parameters

	DI	N	500	600	700	800	900	100	1200
		Α	420	495	624	672	720	800	940,7
MA	AIN .	В	370	465	520	591	656	721	844,1
DIMEN	SIONS	D	127	154	163	188	203	216	276
		h	475,1	572,3	675,9	773,4	840,5	938,9	1127,3
		ISO 5211	F16	F16	F25	F25	F25	F25	F30
		E	65	70	80	80	118	142	150
COUF	LING	□R	36x36	46x46	Ø63.35	Ø63.35	Ø75	Ø85	Ø105
DET	AIL	ØG	210	210	300	300	300	300	350
		ØJ	165	165	254	254	254	254	298
		ØN	22	22	18	18	18	18	22
z	PN10	ØP	620	725	840	950	1050	1160	1380
2		nxØd	16xØ28	16xØ31	20xØ31	20xØ34	24xØ34	24xØ37	28xØ40
3 <u>5</u>		Μ	24	27	27	30	30	33	36
VALVE		ØP	650	770	840	950	1050	1170	1390
VALVE CONNECTION	PN16	nxØd	16xØ33	16xØ36	20xØ36	20xØ39	24xØ39	24xØ42	28xØ49
0		Μ	30	33	33	36	36	39	45
		F	339	339	339	339	339	339	339
		S	125	125	125	125	125	125	125
WORM	GEAR	Z	222	222	222	222	222	222	222
		ØK	300	300	300	300	300	300	300
		Approx. Weight	249,0	359,5	465,0	625,0	815,0	935,0	1330,0

Information / restriction of technical rules need to be observed! The engineer, designing a system or a plant, is responsable for the selection of the correct valve Product suitability must be verified, contact manufacturer for information

Solutions on Control Accesories and Actuation

UNIWAT butterfly valves can be provided with a wide range of solutions on control accessories and actuation which is all packaged at our works according to customer specifications. The modular system permits to distributors and plant users to assemble or replace the diverse options in site. Virtually most applications that may be encountered on the industry today are covered with the standard range of actuation and accessories, nevertheless, other customer tailored solutions can be provided by our R&D Section.

Position Indication Arrangements on Manual Valves

Special designs of proven reliability have been engineered by our R&D section to provide UNIVAL users with more service options.

Pad Locked lever; this simple system prevents unauthorized operation at the plant. It is arranged on request.

🏽 🏠 Comeval®

Pneumatic Actuators CMVL T Series - Options and Accesories

Valve position indication can be provided by some arrangements such as Limit Switches that can be mounted either onto the actuator shell or cased into plastic or metal boxes.

Metal or plastic limit switches boxes

Solenoid Valves in diverse materials and configurations can be provided as the most common accessories on pneumatic actuators. For throttling services a range of standard or smart Positionners can be adapted onto the actuators. Intermediate Gear Boxes can be fitted in all cases for emergency manual actuation.

Solenoid Valves for On/Off control

Pneumatic or Electropneumatic, Standard or Intelligent Positionners

🚯 Comeval®

Intermediate Gear Box for emergency manual actuation

Marketing Tools Available to Distributors

A rich assortment of Uniwat® marketing tools are available to our distributors worldwide, visit our corporate Web site www.comeval.es for more details.

Traceability

Valves are provided with a riveted name plate ensuring traceability, year of manufacture and main parameters. Valves are individually preserved into a sealed air bubble plastic bag and then on sets of some number of valves per cardboard box to assist with handling and storing. Please ask your Uniwat® distributor for packaging details. (no minimum order requirement is imposed).

Also accessible via Internet

at all times

Excelling the best.

Uniwat®

www.comeval.es