

The company was founded in 1987 by transforming the former CSA, which was a trading company dealing with pipes and valves for water networks, into a manufacturing company, through the research and realization of pillar fire hydrants. Since then many other products have been added.

The history of our company is characterised by years of technical and commercial research, which have enabled us to offer a complete range of valves designed for controlling, regulating and protecting the pipelines under pressure in both waterworks and sewage lines as well as fire hydrants.

Our many industrial patents and innovative technical solutions, together with modern and attractive style of design, have made it possible to differentiate our products from those offered by competitors and have allowed us to become a point of reference in our sector.

Flexibility and reliability have been the key points of the rapid growth of CSA over the last few years. We are perfectly aware that we are managing the world's most precious resource and, motivated by this responsibility and the commitment towards our customers, we have dedicated ourselves to constantly improving our products, placing them at the highest levels of quality.

Quality

In the manufacturing business today, quality is the fundamental requirement for achieving and maintaining a growing market share.

For this reason we have always aimed at developing a synergy between the various sectors of the company and thus ensuring:

- -quick and precise answers;
- -evaluation of data received and immediate response;
- -rigorous control of incoming and outgoing products. Since 1998 CSA is certified according to regulation ISO 9001 by Rina (Italian Naval Registry) recently converted into ISO 9001/2008.

During the research and realisation of new products, CSA has always focused his efforts on:

- listening to the customer's needs and finding the best solution at the design and operational phases,
- guiding our R&D department to develop ranges of modern, reliable and complementary products,
- adopting production techniques that, even while complying with the severest quality standards, would allow us to reduce delivery times,
- guaranteeing complete technical support for our customers and prompt after-sales assistance.

This philosophy characterizes us not only as a valve manufacturer but also as a reliable partner whom you can always depend on for consulting and solutions.

The production cycle, aimed at the constant improvement of our products and complete customer satisfaction, ensures predetermined margins of tolerance by establishing production standards, which guarantee that the semi-finished products reach the next production stage with the required specifications. All our valves are made of ductile cast iron GJS 450-10 or 500-7 in absolute compliance with European standards, and are suitable for PN 25-40 bar.

The manufacturing process is carried out exclusively by means of numerically controlled lathes, mills, and horizontal machining units. Subsequent step-by-step controls are based on strict quality procedures. Painting, pretreated by sand blasting grade SA 2.5, is carried out inside a fluidized bed containing epoxy powder, which guarantees maximum surface protection. All our products are tested under water pressure and certified.

Water air valves

	 FOX series Combination air valve Mod. FOX 3F Anti-shock combination air valve Mod. FOX 3F - AS Anti-surge combination air valve Mod. FOX 3F - RFP FOX air valves range conveyance system bias kit Mod. SUB 	5 9 13 17
	LYNX series Combination air valve Mod. LYNX 3F Anti-shock combination air valve Mod. LYNX 3F - AS Anti-surge combination air valve Mod. LYNX 3F - RFP LYNX air valves range conveyance system bias kit Mod. SUB	19 23 27 31
	FOX HP series for high pressure Combination air valve for high pressure Mod. FOX 3F - HP Anti-shock combination air valve for high pressure Mod. FOX 3F - AS - HP	33 37
	 FOX/LYNX air valves range vacuum breaker version FOX/LYNX conveyance system bias kit Mod. SUB FOX/LYNX air valves range discharge only bias kit EO FOX/LYNX air valves range entrance only bias kit IO 	41 41 42 42
	 Air release valve Mod. VENTOLO Single chamber air release valve with high capacity ductile cast iron body and internals made in stainless steel valves nozzle PN 40 bar class 	43
	Air release valve Mod. EOLO Single chamber air release valve with high capacity nozzle PN 25 bar class	45
69,6	ARGO series Combination air valve Mod ARGO Anti-surge combination air valve Mod ARGO 3F - RFP	47 51
	Underground SATURNO series • Anti-surge water combination underground air valve Mod. SATURNO 3F - RFP	55

Combination air valve Mod. FOX 3F

The CSA combination, triple function, automatic air valve Mod. FOX 3F will ensure the proper operation of the pipeline network allowing the release of air pockets during working conditions, the evacuation and entrance of large volumes of air during filling and draining operations.

Technical features and benefits

- Single chamber full bore body in ductile cast iron, PN 40 bar rated, provided with internal ribs for accurate guiding of the floats.
- Aerodynamic deflector in stainless steel to avoid premature closures of the mobile block.
- Drainage valve, produced by CSA, for chamber control and pressure relief during maintenance.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- Nozzle and gasket holder, part of CSA air release system, entirely made in stainless steel AISI 316 and designed with gasket compression control to prevent aging process and consequent leakage during working conditions.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Cover in ductile and screen in stainless steel as a standard execution to prevent the entrance of insects, with three optional outlets (for submerged applications, air inlet only, air outlet only).

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used on changes in slope and at the high points of the pipeline.

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The FOX 3F, thanks to the aerodynamic full port body and deflector, will make sure to avoid premature closures of the mobile block during this phase.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

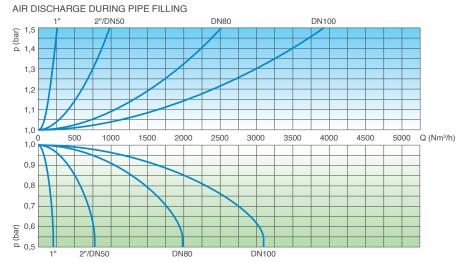
Entrance of large volumes of air

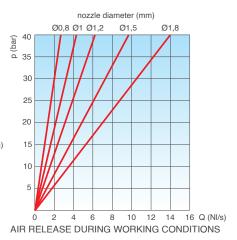
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

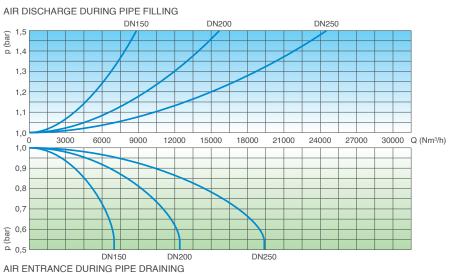
• Vacuum breaker version Mod. FOX 2F, to allow the entrance and discharge of large volumes of air only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the air release won't be required.

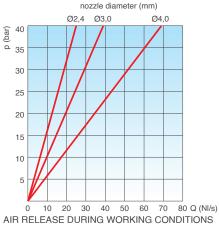
• Version for submerged applications, SUB series, available both for FOX 3F and 2F Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the rapid closure of the air valve.


• Version for air discharge only EO series, available both for FOX 3F and 2F models. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided, such as in pump suction lines or siphons pipelines.



• Version for air entrance only IO series, available for FOX 2F model only. The most important application of IO is to allow the air valve installation in those locations of the system where, for project requirements, air discharge and release must be avoided.




Air flow performance charts

AIR ENTRANCE DURING PIPE DRAINING

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

Working conditions

Treated water max. 60°C.

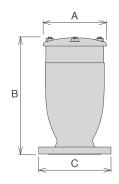
Max. pressure 40 bar.

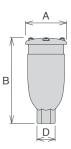
Min. pressure 0,2 bar. Lower on request.

Standard

Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

Weights and dimensions


CONNECTION	А	В	С		D	Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 1"	117	240	-	-	CH 45	4,0
Threaded 2"	141	295	-	-	CH 70	7,5
Flanged 50	141	305	165	-	-	9,5
Flanged 80	172	322	210	205	-	13,8
Flanged 100	206	370	235	220	-	21,7
Flanged 150	285	555	305	285	-	44,5
Flanged 200	365	635	375	340	-	85,0
Flanged 250	450	785	450	405	-	134,0


All values are approximate, consult CSA service for more details.

Nozzle choice

Nozzle diameter in mm according to the size of the air valve and the PN.

	PN 10	PN 16	PN 25	PN 40
1"	1,2	1,2	1	0,8
2"/DN 50	1,5	1,2	1	0,8
DN 80	1,8	1,5	1,2	1
DN 100	2,4	1,8	1,8	1,2
DN 150	4	3	2,4	1,8
DN 200	4	4	4	3
DN 250	4	4	4	4

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle Subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Tag	stainless steel AISI 304	

Anti-shock combination air valve Mod. FOX 3F - AS

The CSA surge alleviation, non slam combination automatic air valve Mod. FOX 3F AS will ensure the proper operation of the pipeline network allowing the release of air pockets during working conditions, the entrance of large volumes of air during draining operations and pipeline bursts and the controlled air outflow, to prevent water hammer.

Technical features and benefits

- Single chamber full bore body in ductile cast iron, PN 40 bar rated, provided with internal ribs for accurate guiding of the mobile block.
- Drainage valve produced by CSA, for chamber control and pressure relief during maintenance.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining only, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Anti water hammer system (also called AS function), never in contact with water, obtained by a spring and shaft in stainless steel, disk with adjustable nozzles for air outflow control.
- Cover in ductile and screen in stainless steel as a standard execution, to prevent the entrance of insects, with optional outlet for submerged applications.

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used at the pumps, on changes in slope ascending, and at the critical points of the pipeline subjected to water hammer and column separation.

Controlled air discharge

During the air discharge it is necessary to avoid rapid closures of the float, responsible of water hammer effects. The FOX 3F AS, thanks to the anti-shock feature, will control the air outflow thus reducing the velocity of the approaching water column and minimizing the risk of overpressure.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

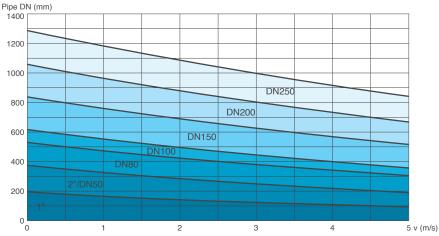
Entrance of large volumes of air

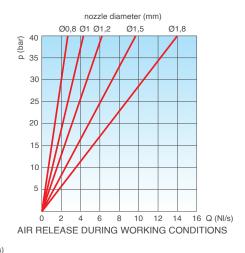
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

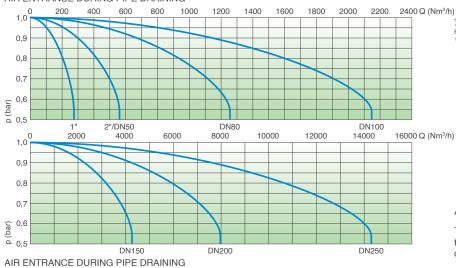
• Vacuum breaker version Mod. FOX 2F AS, to allow the entrance of large volumes of air and the controlled outflow only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems.

• Version for submerged applications, SUB series, available both for FOX 3F AS and 2F AS Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the closure away from the air valve.




 The counteracting spring force as well as the sonic nozzles, both responsible of the proper operation of the AS device, can be modified on request according to the project conditions and the results of the transient analysis.

Air valve selection chart


Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity in m/s.

Air flow performance charts

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

Working conditions

Treated water max. 60°C.

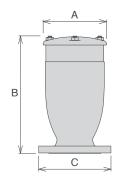
Max. pressure 40 bar.

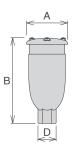
Min. pressure 0,2 bar. Lower on request.

Standard

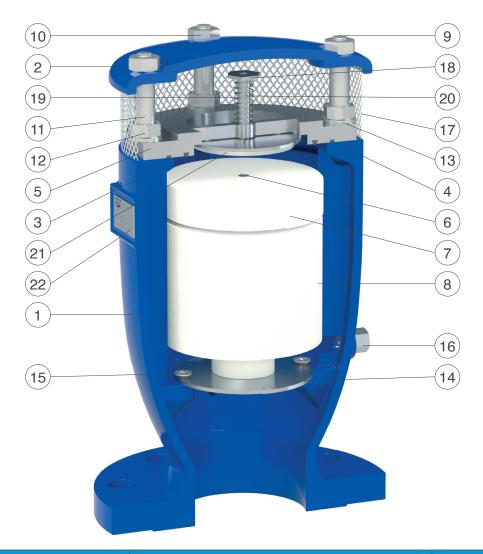
Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

Weights and dimensions


CONNECTION	Α	В	С		D	Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 1"	117	240	-	-	CH 45	4,0
Threaded 2"	141	295	-	-	CH 70	7,5
Flanged 50	141	305	165	-	-	9,5
Flanged 80	172	322	210	205	-	13,8
Flanged 100	206	370	235	220	-	21,7
Flanged 150	285	555	305	285	-	44,5
Flanged 200	365	635	375	340	-	85,0
Flanged 250	450	785	450	405	-	134,0


All values are approximate, consult CSA service for more details.

Nozzle choice


Nozzle diameter in mm according to the size of the air valve and the PN.

	PN 10	PN 16	PN 25	PN 40
1"	1,2	1,2	1	0,8
2"/DN 50	1,5	1,2	1	0,8
DN 80	1,8	1,5	1,2	1
DN 100	2,4	1,8	1,8	1,2
DN 150	4	3	2,4	1,8
DN 200	4	4	4	3
DN 250	4	4	4	4

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Spring guide nut (from DN 100)	stainless steel AISI 303	stainless steel AISI 316
19	Spring	stainless steel AISI 302	stainless steel AISI 316
20	AS shaft	stainless steel AISI 303	stainless steel AISI 316
21	AS flat	stainless steel AISI 304	stainless steel AISI 316
22	Tag	stainless steel AISI 304	

The list of materials and components is subject to changes without notice.

Anti-surge combination air valve Mod. FOX 3F - RFP

The CSA surge dampening, anti-slam automatic air valve Mod. FOX 3F RFP has been designed to allow the release of air pockets accumulated in working conditions, the entrance of large volumes of air in case of pipe draining or bursts and to prevent pipeline damages coming from pressure transients, associated with high air outflow velocities.

Technical features and benefits

- Uncontrolled pipeline filling operations and transient events will inevitably generate the rapid closure of
 the air valves installed along the system, with consequent damages. The CSA air valve FOX 3F RFP will
 automatically adjust the outflow capacity, thus reducing the velocity of the incoming water column
 minimizing the risk of water hammer.
- The spray effect during closing and the risk of drowning, compared to standard combination air valves, are reduced.
- Single chamber full bore body in ductile cast iron, PN 40 bar rated, provided with internal ribs for accurate guiding of the mobile block.
- Mobile block composed of the main float and upper disk, joined together by the CSA air release system in AISI 316 (patent pending), and an additional anti surge obturator.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316.
- Cover in ductile and screen in stainless steel as a standard execution, to prevent the entrance of insects, with optional outlet for submerged applications and air conveyance.

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used, in combination with CSA AS technology, on changes in slope and high points of the profile to provide the best air management and control with effective surge protection.

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The FOX 3F RFP, thanks to an aerodynamic full port body and deflector, will make sure to avoid premature closures of the mobile block during this phase.

Controlled outflow

If the differential pressure of air, during pipe filling, increases above a certain value without control there is the risk of water hammer and damages to the system. Should that happen the RFP upper float will rise automatically, reducing the outflow and consequently the velocity of the approaching water column.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

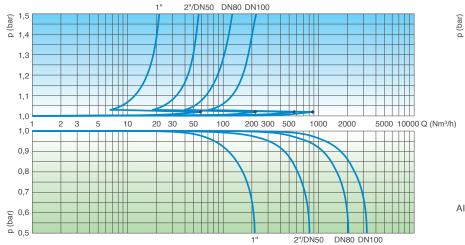
Entrance of large volumes of air

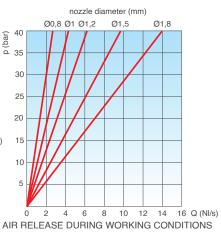
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

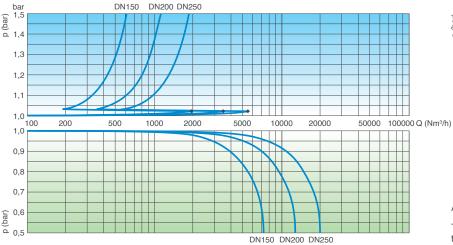
• Vacuum breaker version Mod. FOX 2F RFP, to allow the entrance of large volumes of air and the controlled outflow only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the water hammer effect has to be reduced without the necessity of air release.

• Version for submerged applications, SUB series, available both for FOX 3F RFP and 2F RFP Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the closure away from the air valve.




• Version for air discharge only EO series, available both for FOX 3F RFP and 2F RFP models. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided, such as in pump suction lines or siphons pipelines.

Air flow performance charts


AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

nozzle diameter (mm) Ø3,0 Ø4,0 30 25 20 15 10 60 70 80 Q (NI/s) 20 30 40 50 10 AIR RELEASE DURING WORKING CONDITIONS

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

Working conditions

Treated water max. 60°C.

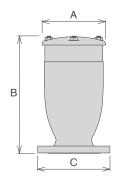
Max. pressure 40 bar.

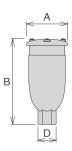
Min. pressure 0,2 bar. Lower on request.

Standard

Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

Weights and dimensions

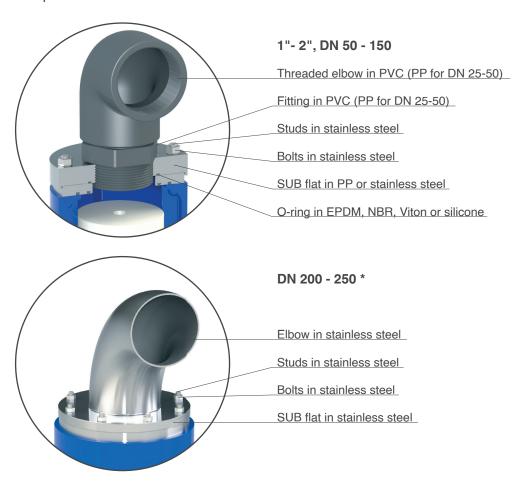

CONNECTION	А	В	С		D	Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 1"	117	240	-	-	CH 45	4,0
Threaded 2"	141	295	-	-	CH 70	7,5
Flanged 50	141	305	165	-	-	9,5
Flanged 80	172	322	210	205	-	13,8
Flanged 100	206	370	235	220	-	21,7
Flanged 150	285	555	305	285	-	44,5
Flanged 200	365	635	375	340	-	85,0
Flanged 250	450	785	450	405	-	134,0


All values are approximate, consult CSA service for more details.

Nozzle choice

Nozzle diameter in mm according to the size of the air valve and the PN.

	PN 10	PN 16	PN 25	PN 40
1"	1,5	1,2	1	0,8
2"/DN 50	1,8	1,5	1,2	1
DN 80	1,8	1,5	1,2	1
DN 100	3	2,4	1,8	1,2
DN 150	4	3	2,4	1,8
DN 200	4	4	4	3
DN 250	4	4	4	4



N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	RFP flat with O-ring	polypropylene and NBR	EPDM/Viton/silicone
7	Upper flat with nozzle subset	polypropylene and stainless steel AISI 316	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Tag	stainless steel AISI 304	

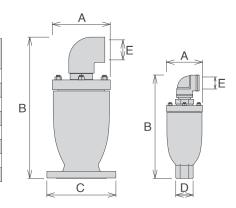
FOX air valves range conveyance system bias kit - Mod. SUB

The air conveyance system SUB, provided with watertight threaded elbow for submerged applications, has been created to be retrofitted on existing CSA FOX air valves or as a standalone version. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the rapid closure of the air valve.

Technical data

Working conditions

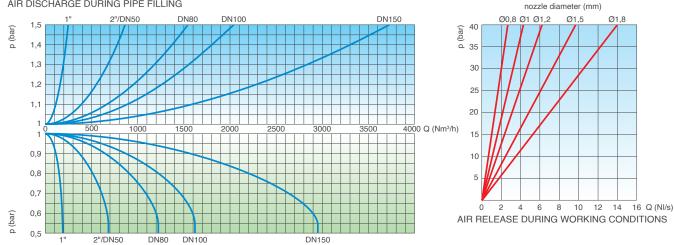
Treated water max. 60°C. Max. pressure 40 bar. Min. pressure 0,2 bar. Lower on request.


Standard

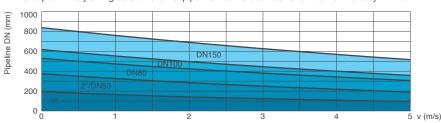
Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on flanges and painting on request.

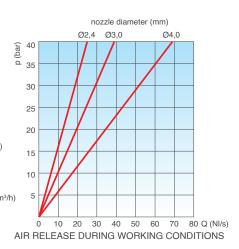
Weights and dimensions

CONNECTION	Α	В	С		D	Е	Weight
inch/mm	mm	mm	m	m	mm	inch	Kg
Threaded 1"	105	302	-	-	CH 45	1"	4,0
Threaded 2"	128	385	-	-	CH 70	2"	7,5
Flanged 50	128	395	165	-	-	2"	9,5
Flanged 80	158	439	210	205	-	2" 1/2	13,8
Flanged 100	192	507	235	220	-	3"	21,7
Flanged 150	272	648	305	285	-	4"	44,5
Flanged 200	359	828	375	340	-	*	92,5
Flanged 250	430	1060	450	405	-	*	147,0

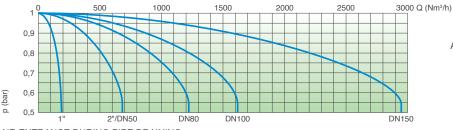

Approximate values. - *: Mod. SUB is stock available up to DN 150 mm, for larger sizes consult with CSA.

FOX SUB - Air flow performance charts

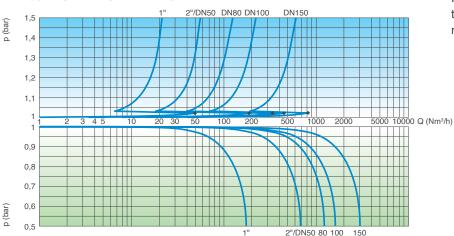

AIR DISCHARGE DURING PIPE FILLING



FOX AS SUB - Air valve selection chart


AIR ENTRANCE DURING PIPE DRAINING

Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity in m/s.


FOX AS SUB - Air flow performance chart

AIR ENTRANCE DURING PIPE DRAINING

FOX RFP SUB - Air flow performance charts

AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nm³/h using a safety factor.

Nozzle choice

For the nozzle choice make reference to the available technical data sheets of the relative FOX models.

Combination air valve Mod. LYNX 3F

The CSA combination, triple function, automatic air valve Mod. LYNX 3F will ensure the proper operation of the pipeline network allowing the release of air pockets during working conditions, the evacuation and entrance of large volumes of air during filling and draining operations.

Technical features and benefits

- Single chamber body in ductile cast iron, PN 40 bar rated, provided with internal ribs for accurate guiding
 of the floats.
- Aerodynamic deflector in stainless steel to avoid premature closures of the mobile block.
- Drainage valve, produced by CSA, for chamber control and pressure relief during maintenance.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316 and designed with gasket compression control to prevent aging process and consequent leakage during working conditions.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Cover in ductile and screen in stainless steel as a standard execution to prevent the entrance of insects, with three optional outlets (for submerged applications, air inlet only, air outlet only).

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used on changes in slope and at the high points of the pipeline.

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The LYNX 3F, thanks to the aerodynamic body and the deflector, will make sure to avoid premature closures of the mobile block during this phase.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

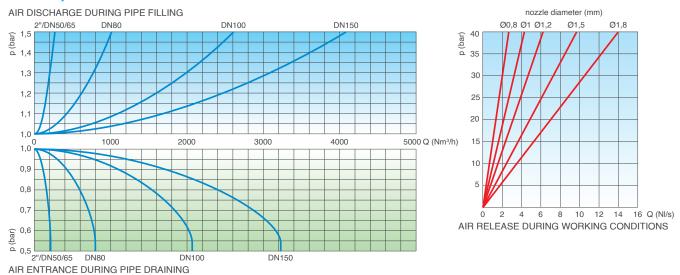
Entrance of large volumes of air

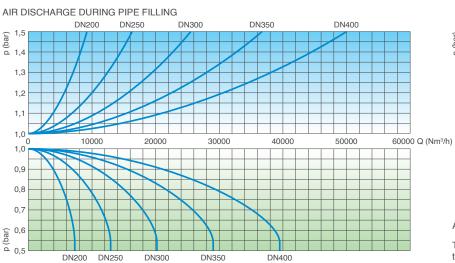
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

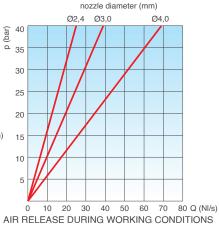
Optional

• Vacuum breaker version Mod. LYNX 2F, to allow the entrance and discharge of large volumes of air only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the air release won't be required.

• Version for submerged applications, SUB series, available both for LYNX 3F and 2F Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the rapid closure of the air valve.


• Version for air discharge only EO series, available both for LYNX 3F and 2F models. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided, such as in pump suction lines or siphons pipelines.




• Version for air entrance only IO series, available for LYNX 2F model only. The most important application of IO is to allow the air valve installation in those locations of the system where, for project requirements, air discharge and release must be avoided.

Air flow performance charts

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

Working conditions

Treated water max. 60°C.

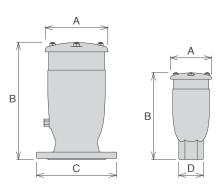
Max. pressure 40 bar.

Min. pressure 0,2 bar. Lower on request.

AIR ENTRANCE DURING PIPE DRAINING

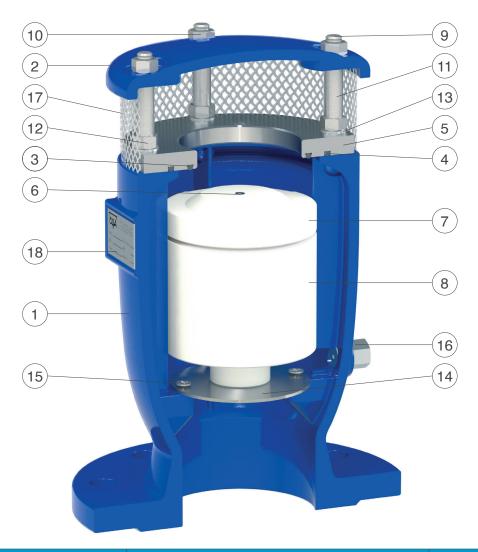
Nozzle choice

Nozzle diameter in mm according to the air valve size and the PN.


Standard

Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

	PN 10	PN 16	PN 25	PN 40
2"-DN 65	1,2	1,2	1	0,8
DN 80	1,8	1,5	1,2	0,8
DN 100	1,8	1,5	1,2	1
DN 150	2,4	1,8	1,8	1,2
DN 200	4	3	2,4	1,8
DN 250	4	4	3	2,4
DN 300	4	4	4	4
DN 350	4	4	4	4
DN 400	4	4	4	4


Weights and dimensions

CONNECTION	А	В	С		D	Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 2"	117	240	-	-	CH 70	4,8
Flanged 50	117	250	165	-	-	6,8
Flanged 65	117	250	185	-	-	7,6
Flanged 80	141	305	210	205	-	10,8
Flanged 100	172	303	235	220	-	13,8
Flanged 150	206	337	305	285	-	23,0
Flanged 200	285	555	375	340	-	55,0
Flanged 250	365	635	450	405	-	101,0
Flanged 300	420	785	515	455	-	127,0
Flanged 350	515	940	580	520	-	250,5
Flanged 400	600	1075	620	580	-	304,0

Values are approximate, consult CSA service for more details.

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle Subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Tag	stainless steel AISI 304	

Anti-shock combination air valve Mod. LYNX 3F - AS

The CSA surge alleviation, non slam combination automatic air valve Mod. LYNX 3F AS will ensure the proper operation of the pipeline network allowing the release of air pockets during working conditions, the entrance of large volumes of air during draining operations and pipeline bursts and the air discharge with controlled speed, to prevent water hammer.

Technical features and benefits

- Single chamber body in ductile cast iron, PN 40 bar rated, provided with internal ribs for accurate guiding
 of the mobile block.
- Drainage valve produced by CSA, for chamber control and pressure relief during maintenance.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining only, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Anti water hammer system (also called AS function), never in contact with water, obtained by a spring and shaft in stainless steel, and a disk with adjustable nozzles for air outflow control.
- Cover in ductile and screen in stainless steel as a standard execution, to prevent the entrance of insects, with optional outlet for submerged applications.

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used at the pumps, on changes in slope ascending, and at the critical points of the pipeline subjected to water hammer and column separation.

Controlled air discharge

During the air discharge it is necessary to avoid rapid closures of the float, responsible of water hammer effects. The LYNX 3F AS, thanks to the anti-shock feature, will control the air outflow thus reducing the velocity of the approaching water column and minimizing the risk of overpressure.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

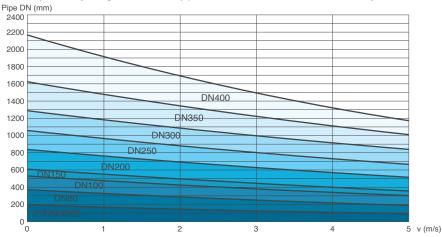
Entrance of large volumes of air

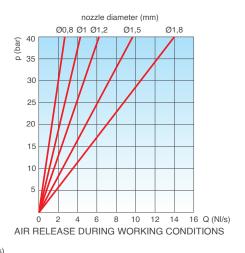
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

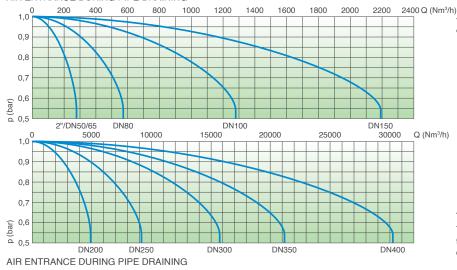
Vacuum breaker version Mod. LYNX 2F AS, to allow the entrance of large volumes of air and the controlled outflow only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems.

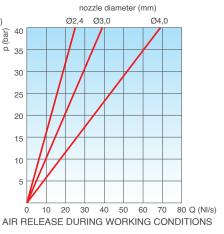
• Version for submerged applications, SUB series, available both for LYNX 3F AS and 2F AS Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the closure away from the air valve.




The counteracting spring force as well as the sonic nozzles, both responsible of the proper operation of the AS device, can be modified on request according to the project conditions and the results of the transient analysis.

Air valve selection chart


Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity in m/s.



Air flow performance charts

AIR ENTRANCE DURING PIPE DRAINING

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

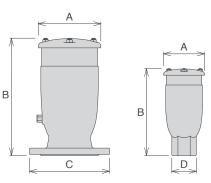
Working conditions

Treated water max. 60°C. Max. pressure 40 bar.

Min. pressure 0,2 bar. Lower on request.

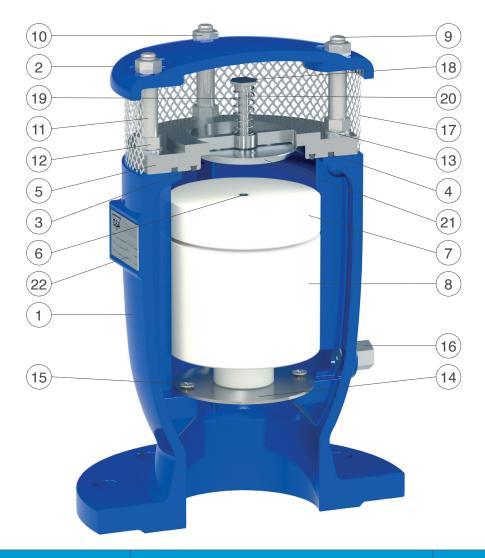
Nozzle choice

Nozzle diameter in mm according to the air valve size and the PN.


Standard

Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

PN 10	PN 16	PN 25	PN 40
1,2	1,2	1	0,8
1,8	1,5	1,2	0,8
1,8	1,5	1,2	1
2,4	1,8	1,8	1,2
4	3	2,4	1,8
4	4	3	2,4
4	4	4	4
4	4	4	4
4	4	4	4
	1,2 1,8 1,8 2,4 4 4	1,2 1,2 1,8 1,5 1,8 1,5 2,4 1,8 4 3 4 4 4 4	1,2 1,2 1 1,8 1,5 1,2 1,8 1,5 1,2 2,4 1,8 1,8 4 3 2,4 4 4 3 4 4 4 4 4 4


Weights and dimensions

CONNECTION	А	В	(С		Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 2"	117	240	-	-	CH 70	4,8
Flanged 50	117	250	165	-	-	6,8
Flanged 65	117	250	185	-	-	7,6
Flanged 80	141	305	210	205	-	10,8
Flanged 100	172	303	235	220	-	13,8
Flanged 150	206	337	305	285	-	23,0
Flanged 200	285	555	375	340	-	55,0
Flanged 250	365	635	450	405	-	101,0
Flanged 300	420	785	515	455	-	127,0
Flanged 350	515	940	580	520	-	250,5
Flanged 400	600	1075	620	580	-	304,0

Values are approximate, consult CSA service for more details.

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Spring guide nut (from DN 150)	stainless steel AISI 303	stainless steel AISI 316
19	Spring	stainless steel AISI 302	stainless steel AISI 316
20	AS shaft	stainless steel AISI 303	stainless steel AISI 316
21	AS flat	stainless steel AISI 304	stainless steel AISI 316
22	Tag	stainless steel AISI 304	

The list of materials and components is subject to changes without notice.

Anti-surge combination air valve Mod. LYNX 3F - RFP

The CSA surge dampening, anti-slam automatic air valve Mod. LYNX 3F RFP has been designed to allow the release of air pockets accumulated in working conditions, the entrance of large volumes of air in case of pipe draining or bursts and to prevent pipeline damages coming from pressure transients, associated with high air outflow velocities.

Technical features and benefits

- Uncontrolled pipeline filling operations and transient events will inevitably generate the rapid closure of
 the air valves installed along the system, with consequent damages. The CSA air valve LYNX 3F RFP
 will automatically adjust the outflow capacity, thus reducing the velocity of the incoming water column
 minimizing the risk of water hammer.
- The spray effect during closing and the risk of drowning, compared to standard combination air valves, are reduced.
- Single chamber body in ductile cast iron, PN 40 bar rated, provided with internal ribs accurate guiding of the mobile block.
- Mobile block composed of the main float and upper disk, joined together by the CSA air release system in AISI 316 (patent pending), and an additional anti-surge obturator.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316.
- Cover in ductile and scree in stainless steel as a standard execution, to prevent the entrance of insects, with optional outlet for submerged applications and air conveyance.

- Main transmission lines.
- Water distribution networks.
- Irrigation systems.
- In general this model is used, in combination with CSA AS technology, on changes in slope and high points of the profile to provide the best air management and control with effective surge protection.

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The LYNX 3F RFP, thanks to the aerodynamic body and deflector, will make sure to avoid premature closures of the mobile block during this phase.

Controlled outflow

If the differential pressure of air, during pipe filling, increases above a certain value without control there is the risk of water hammer and damages to the system. Should that happen the RFP upper float will rise automatically, reducing the outflow and consequently the velocity of the approaching water column.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

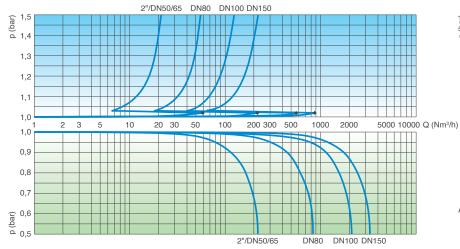
Entrance of large volumes of air

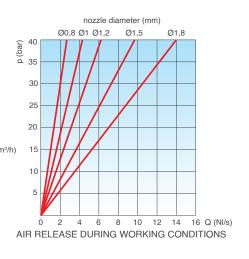
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

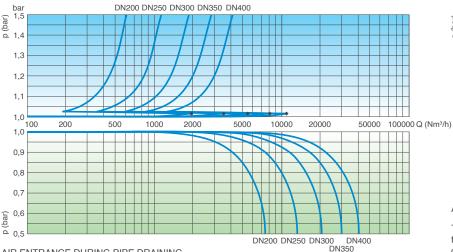
• Vacuum breaker version Mod. LYNX 2F RFP, to allow the entrance of large volumes of air and the controlled outflow only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the water hammer effect has to be reduced without the necessity of air release.

• Version for submerged applications, SUB series, available both for LYNX 3F RFP and 2F RFP Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the closure away from the air valve.




• Version for air discharge only EO series, available both for LYNX 3F RFP and 2F RFP models. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided, such as in pump suction lines or siphons pipelines.

Air flow performance charts


AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

nozzle diameter (mm) Ø3,0 Ø4,0 (bar) 30 25 20 15 10 60 70 80 Q (NI/s) 30 40 50 10 20 AIR RELEASE DURING WORKING CONDITIONS

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, without the screen, then converted in Nm³/h using a safety factor.

Working conditions

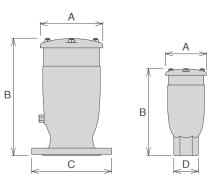
Treated water max. 60°C.

Max. pressure 40 bar.

Min. pressure 0,2 bar. Lower on request.

Nozzle choice

Nozzle diameter in mm according to the air valve size and the PN.


Standard

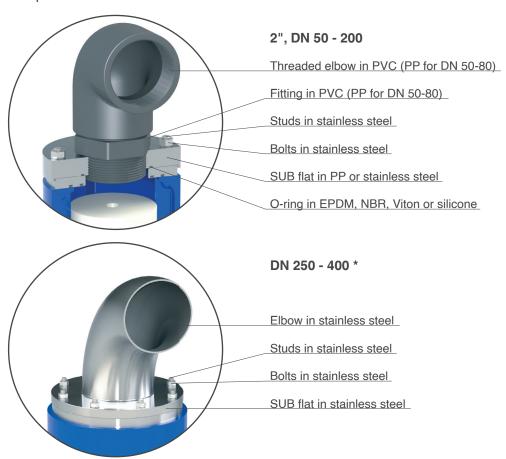
Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on the flanges and painting on request.

2"-DN 65 1,5 1,2 1 0,8 DN 80 1,8 1,5 1,2 1 DN 100 1,8 1,5 1,2 1 DN 150 3 2,4 1,8 1,2 DN 200 4 3 2,4 1,8 DN 250 4 4 4 3		PN 10	PN 16	PN 25	PN 40
DN 100 1,8 1,5 1,2 1 DN 150 3 2,4 1,8 1,2 DN 200 4 3 2,4 1,8	2"-DN 65	ON 65 1,5	1,2	1	0,8
DN 150 3 2,4 1,8 1,2 DN 200 4 3 2,4 1,8	DN 80	80 1,8	1,5	1,2	1
DN 200 4 3 2,4 1,8	DN 100	100 1,8	1,5	1,2	1
,, -	DN 150	150 3	2,4	1,8	1,2
DN 250 4 4 4 3	DN 200	200 4	3	2,4	1,8
	DN 250	250 4	4	4	3
DN 300 4 4 4 4	DN 300	300 4	4	4	4
DN 350 4 4 4 4	DN 350	350 4	4	4	4
DN 400 4 4 4 4	DN 400	400 4	4	4	4

Weights and dimensions

CONNECTION	А	В	С		D	Weight
inch/mm	mm	mm	m	m	mm	Kg
Threaded 2"	117	240	-	-	CH 70	4,8
Flanged 50	117	250	165	-	-	6,8
Flanged 65	117	250	185	-	-	7,6
Flanged 80	141	305	210	205	-	10,8
Flanged 100	172	303	235	220	-	13,8
Flanged 150	206	337	305	285	-	23,0
Flanged 200	285	555	375	340	-	55,0
Flanged 250	365	635	450	405	-	101,0
Flanged 300	420	785	515	455	-	127,0
Flanged 350	515	940	580	520	-	250,5
Flanged 400	600	1075	620	580	-	304,0

Values are approximate, consult CSA service for more details.



N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	RFP flat with O-ring	polypropylene and NBR	EPDM/Viton/silicone
7	Upper flat with nozzle subset	polypropylene and stainless steel AISI 316	
8	Float	polypropylene	
9	Studs	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Spacers	stainless steel AISI 304	stainless steel AISI 316
12	Nuts	stainless steel AISI 304	stainless steel AISI 316
13	Washers	stainless steel AISI 304	stainless steel AISI 316
14	Deflector (not in 1")	stainless steel AISI 304	stainless steel AISI 316
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Drain valve	stainless steel AISI 303	stainless steel AISI 316
17	Screen	stainless steel AISI 304	
18	Tag	stainless steel AISI 304	

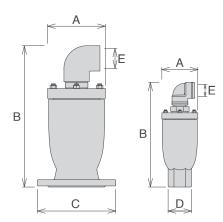
LYNX air valves range conveyance system bias kit - Mod. SUB

The air conveyance system SUB, provided with watertight threaded elbow for submerged applications, has been created to be retrofitted on existing CSA LYNX air valves or as a standalone version. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is the possibility of conveying spurts coming from the rapid closure of the air valve.

Technical data

Working conditions

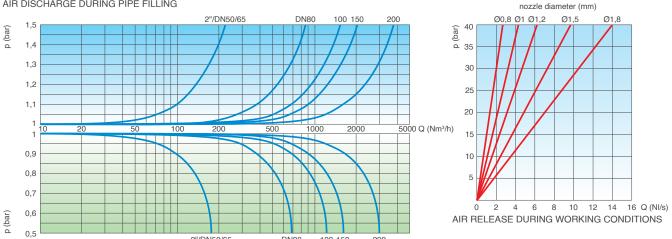
Treated water max. 60°C. Max. pressure 40 bar. Min. pressure 0,2 bar. Lower on request.


Standard

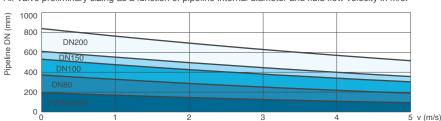
Designed in compliance with EN-1074/4 and AWWA C-512. Flanges according to EN 1092/2 or ANSI 150. Epoxy painting applied through fluidized bed technology blue RAL 5005. Changes on flanges and painting on request.

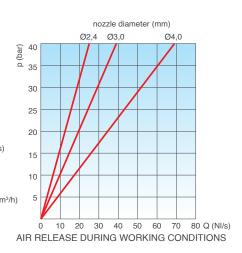
Weights and dimensions

CONNECTION	А	В	()	D	Е	Weight
inch/mm	mm	mm	m	m	mm	inch	Kg
Threaded 2"	105	293	-	-	CH 70	1"	4,8
Flanged 50	105	298	165	-	-	1"	6,8
Flanged 65	105	298	185	-	-	1"	7,6
Flanged 80	128	395	210	205	-	2"	10,8
Flanged 100	158	420	235	220	-	2" 1/2	13,8
Flanged 150	192	474	305	285	-	3"	23,0
Flanged 200	272	648	375	340	-	4"	55,0
Flanged 250	359	828	450	405	-	*	108,5
Flanged 300	414	1047	515	455	-	*	140,0
Flanged 350	492	1310	580	520	-	*	270,5
Flanged 400	578	1510	620	580	-	*	332,5

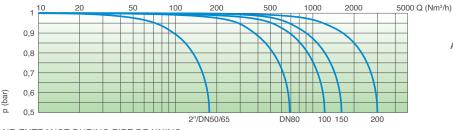

Approximate values. - *: Mod. SUB is stock available up to DN 200 mm, for larger sizes consult with CSA.

LYNX SUB - Air flow performance charts

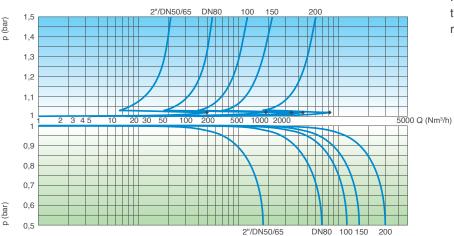

AIR DISCHARGE DURING PIPE FILLING



AIR ENTRANCE DURING PIPE DRAINING


LYNX AS SUB - Air valve selection chart

Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity in m/s.


LYNX AS SUB - Air flow performance chart

AIR ENTRANCE DURING PIPE DRAINING

LYNX RFP SUB - Air flow performance charts

AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

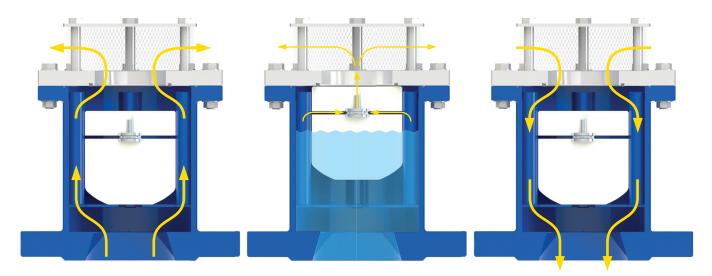
The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nm³/h using a safety factor.

Nozzle choice

For the nozzle choice make reference to the available technical data sheets of the relative LYNX models.

Combination air valve for high pressure Mod. FOX 3F - HP

The CSA automatic air release valve Mod. FOX 3F HP will ensure the proper operation of the pipeline network allowing the release of air pockets during working conditions, the evacuation and entrance of large volumes of air during filling and draining operations.



Technical features and benefits

- Body in carbon welded steel, PN 64 bar rated, provided with internal spacers for consistent and accurate guiding of the mobile block.
- In general supplied with fixed flanges according to EN 1092/2 or different standards on request.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- The nozzle and the gasket holder, part of CSA air release system, are entirely made in AISI 316 and designed with gasket compression control to prevent aging process and consequent leakage during working conditions.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Mesh and cap in stainless steel.

- Main transmission lines.
- Mining.
- Dams and high pressure systems.
- In general this model is used on changes in slope descending and at the high points of the pipeline for those locations exposed to high pressure conditions.

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The FOX 3F HP, thanks to an aerodynamic deflector, will make sure to avoid premature closures of the mobile block during this phase.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

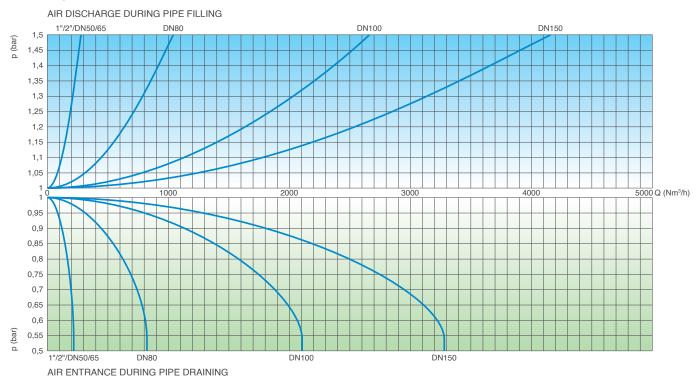
Entrance of large volumes of air

During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

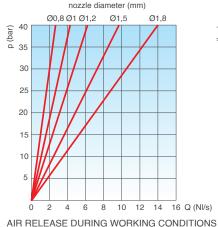
• Vacuum breaker version Mod. FOX 2F HP to allow the entrance and discharge of large volumes of air only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the air release won't be required.

• Version for submerged applications, SUB series, available both for FOX 3F HP and 2F HP Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is to avoid the spray effect, conveying spurts coming from the rapid closure of the air valve.

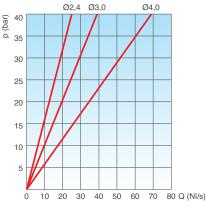

• Version for air discharge only EO series, available both for FOX 3F HP and 2F HP models. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided.

• Version for air entrance only IO series, available for FOX 2F HP model only. The most important application of IO is to allow the air valve installation in those locations of the system where, for project requirements, air discharge and release must be avoided.

Air flow performance charts

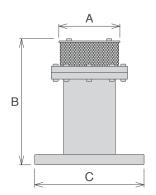

The air flow charts were created in Kg/s from laboratory tests and numerical analysis without the screen, then converted in Nm³/h using a safety factor.

Working conditions


Treated water max. 60° C. Version for high temperature available on request. Maximum pressure 64 bar. Minimum press. 0,2 bar. Lower on request.

Standard

Designed in compliance with EN-1074/4. Flanges according to EN 1092/2, ANSI. Epoxy painting applied through fluidized bed technology blue RAL 5005. Other flanges or painting on request.

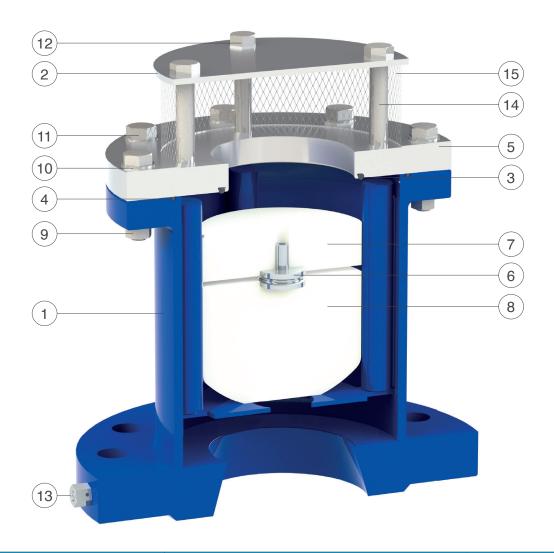


nozzle diameter (mm)

Weights and dimensions

CONNECTION	Α	В	С	Weight
inch/mm	mm	mm	mm	Kg
Threaded 1"	165	240	180	4,2
Threaded 2"	165	240	180	5,0
Flanged 50	165	240	180	6,0
Flanged 65	185	240	180	6,0
Flanged 80	200	265	205	9,2
Flanged 100	235	334	205	13,0
Flanged 150	300	380	250	35,0

All values are approximate, consult CSA service for more details.



Nozzle choice

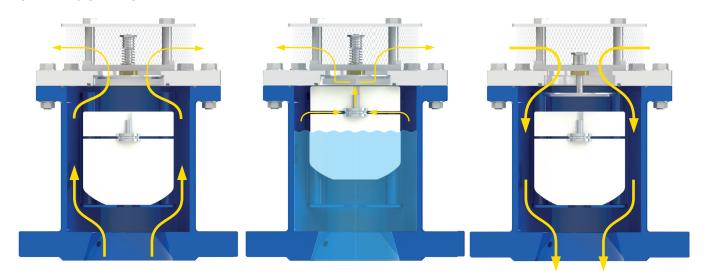
	PN 10	PN 16	PN 25	PN 40	PN 64
1"	1,2	1,2	1	0,8	0,8
2"/DN 50/65	1,5	1,2	1	0,8	0,8
DN 80	1,8	1,5	1,2	1	0,8
DN 100	2,4	1,8	1,8	1,2	1
DN 150	4	3	2,4	1,8	1,2

Nozzle diameter in mm according to the size of the air valve and the PN.

N.	Component	Standard material	Optional
1	Body	painted steel	
2	Сар	stainless steel AISI 304	stainless steel AISI 316
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle Subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Nut	stainless steel AISI 304	stainless steel AISI 316
10	Washers	stainless steel AISI 304	stainless steel AISI 316
11	Screws	stainless steel AISI 304	stainless steel AISI 316
12	Screws	stainless steel AISI 304	stainless steel AISI 316
13	Drain valve	stainless steel AISI 303	stainless steel AISI 316
14	Spacers	stainless steel AISI 304	stainless steel AISI 316
15	Screen	stainless steel AISI 304	

Anti-shock combination air valve for high pressure - Mod. FOX 3F - AS - HP

The CSA surge prevention automatic air release valve Mod. FOX 3F AS HP will allow the release of air pockets during working conditions, the entrance of large volumes of air during draining operations and pipeline bursts and the air discharge with controlled speed, to prevent water hammer.


Technical features and benefits

- Body in carbon welded steel, PN 64 bar rated, provided with internal spacers for consistent and accurate guiding of the mobile block.
- In general supplied with fixed flanges according to EN 1092/2 or different standards on request.
- Mobile block composed of a cylindrical float and upper disk in solid polypropylene, joined together by the CSA air release system in AISI 316 (patent pending). The solid cylindrical floats, obtained by CNC machining only, avoid deformations and ensure a great sliding precision inside the body processed ribs and a perfectly vertical thrust.
- Nozzle and gasket holder, part of CSA air release system, entirely made in AISI 316 and designed with gasket compression control to prevent aging process and consequent leakage during working conditions.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Anti water hammer system (also called AS function), never in contact with water, obtained by a spring and shaft in stainless steel, disk with adjustable sonic nozzles for air flow control.

- Main transmission lines.
- Mining.
- Dams and high pressure systems.
- In general this model is used on pumping stations, changes in slope ascending, and at the critical points of the pipeline subjected to water hammer and column separation.

Operating principle

Controlled air discharge

During the air discharge it is necessary to avoid rapid closures of the float, responsible of water hammer effects. The FOX 3F AS HP, thanks to the anti-shock feature, will control the air outflow thus reducing the velocity of the approaching water column. The risk of overpressure will therefore be minimized.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

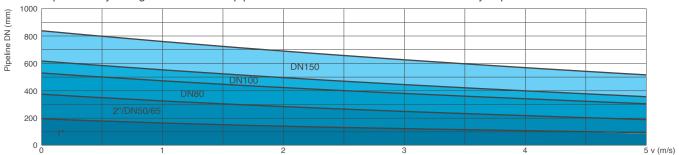
Entrance of large volumes of air

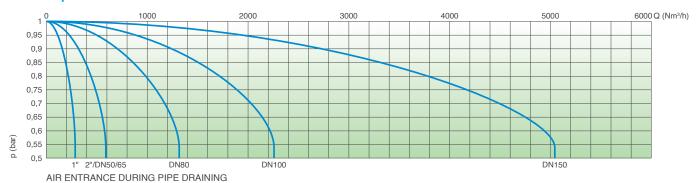
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

• Vacuum breaker version Mod. FOX 2F AS HP, to allow the entrance of large volumes of air and the controlled outflow only. This model is normally recommended in changes in slope ascending, long ascending segments, dry fire systems.

• Version for submerged applications, SUB series, available both for FOX 3F AS HP and 2F AS HP Models, with threaded elbow for air conveyance. The design sprang from the necessity of having an air valve performing also in case of flood, without the risk of contaminated water entering the pipeline. Another benefit of SUB is to avoid the spray effect, conveying spurts coming from the closure away from the air valve.

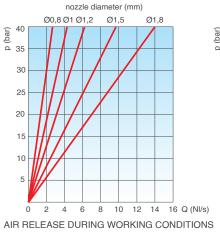

 The counteracting spring force as well as the sonic nozzles, both responsible of the proper operation of the AS device, can be modified on request according to the project conditions and the transient analysis.

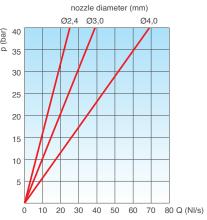

Technical data

Air valve selection chart

Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity expressed in m/s.

Air flow performance chart

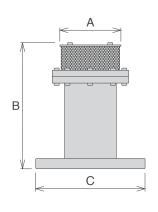

The air flow charts were created in Kg/s from laboratory tests and numerical analysis without the screen, then converted in Nm³/h using a safety factor.


Working conditions

Treated water max. 60° C. Version for high temperature available on request. Maximum pressure 64 bar. Minimum press. 0,2 bar. Lower on request.

Standard

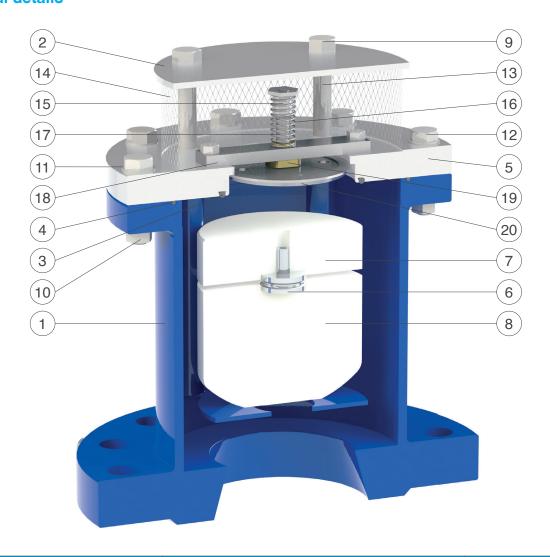
Designed in compliance with EN-1074/4. Flanges according to EN 1092/2, ANSI. Epoxy painting applied through fluidized bed technology blue RAL 5005. Other flanges or painting on request.



Weights and dimensions

CONNECTION	А	В	С	Weight
inch/mm	mm	mm	mm	Kg
Threaded 1"	165	240	180	4,2
Threaded 2"	165	240	180	5,0
Flanged 50	165	240	180	6,0
Flanged 65	185	240	180	6,0
Flanged 80	200	265	205	9,2
Flanged 100	235	334	205	13,0
Flanged 150	300	380	250	35,0

All values are approximate, consult CSA service for more details.

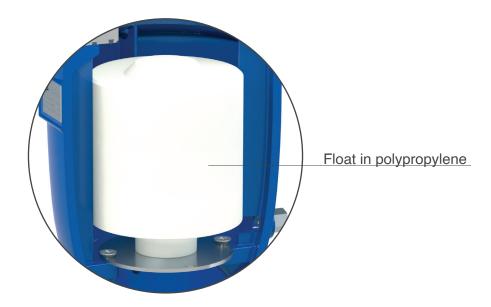


Nozzle choice

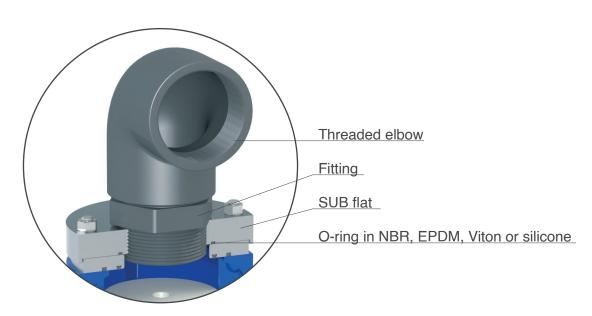
	PN 10	PN 16	PN 25	PN 40	PN 64
1"	1,2	1,2	1	0,8	0,8
2"/DN 50/65	1,5	1,2	1	0,8	0,8
DN 80	1,8	1,5	1,2	1	0,8
DN 100	2,4	1,8	1,8	1,2	1
DN 150	4	3	2,4	1,8	1,2

Nozzle diameter in mm according to the size of the air valve and the PN.

N.	Component	Standard material	Optional
1	Body	painted steel	
2	Сар	stainless steel AISI 304	stainless steel AISI 316
3	O-ring	NBR	EPDM/Viton/silicone
4	O-ring	NBR	EPDM/Viton/silicone
5	Seat	stainless steel AISI 304	stainless steel AISI 316
6	Nozzle subset	stainless steel AISI 316	
7	Upper flat	polypropylene	
8	Float	polypropylene	
9	Screws	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Washer	stainless steel AISI 304	stainless steel AISI 316
12	Screws	stainless steel AISI 304	stainless steel AISI 316
13	Spacers	stainless steel AISI 304	stainless steel AISI 316
14	Screen	stainless steel AISI 304	
15	Spring guide nut	stainless steel AISI 303	stainless steel AISI 316
16	Spring	stainless steel AISI 302	stainless steel AISI 316
17	AS shaft	stainless steel AISI 303	stainless steel AISI 316
18	Support with screws (in DN 150)	stainless steel AISI 304	stainless steel AISI 316
19	Guiding nut (in DN 150)	Delrin (polyoxymethylene)	
20	AS flat	stainless steel AISI 304	stainless steel AISI 316


The list of materials and components is subject to changes without notice.

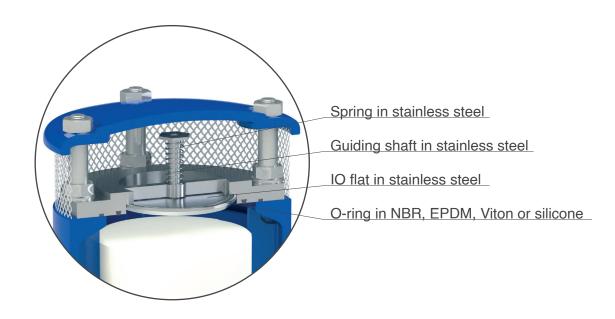
FOX/LYNX air valves range vacuum breaker version


Designed to allow the discharge and entrance of large volumes of air during pipe filling and draining /bursts, this version is usually recommended in changes in slope ascending, long ascending segments, dry fire systems, and wherever the air release won't be required.

FOX/LYNX conveyance system bias kit - Mod. SUB

The air conveyance system SUB, provided with watertight threaded elbow for air conveyance and submerged applications, has been created to be retrofitted on existing CSA FOX air valves or as a standalone version. Another benefit of SUB is to convey spurts coming from the rapid closure of the air valve. The SUB kit is produced in plastic, different materials are available on request.

FOX/LYNX air valves range discharge only bias kit EO

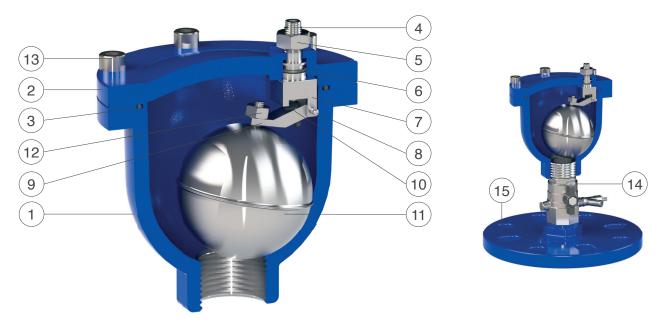

The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and whenever for project requirements air entrance must be avoided.

FOX/LYNX air valves range entrance only bias kit IO

The most important application of IO is to allow the air valve installation in those locations of the system where, for project requirements, air discharge and release must be avoided.

Air release valve Mod. VENTOLO

The CSA single function, automatic air release valve Ventolo will ensure the proper operation of the system allowing the release of air pockets accumulated during working conditions.



Technical features and benefits

- Body and cover in ductile cast iron, PN 40 bar rated.
- Float in stainless steel AISI 304 or 316.
- Lever and pivots in AISI 303 or 316.
- Nozzle in stainless steel AISI 303 or 316.
- Compass lever technology to allow large air release capacity through the nozzle.
- Double O-ring to guarantee the perfect water tightness during working conditions.
- Gasket compression control thanks to the adjustable nozzle.
- Nuts and bolts in stainless steel AISI 304 or 316.
- Minimum working pressure 0,1 bar.

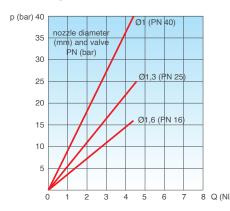
- Water distribution systems, irrigation, buildings.
- Pumps, control valves and modulating devices.
- In general when the simple air release function is required, it can be combined with CSA kinetic air valves series for large air inflow and outflow requirements.

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Сар	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	Nozzle	stainless steel AISI 303	stainless steel AISI 316
5	Nut	stainless steel AISI 304	stainless steel AISI 316
6	O-ring	NBR	EPDM/Viton/silicone
7	Upper lever	stainless steel AISI 303	stainless steel AISI 316
8	Pivot	stainless steel AISI 303	stainless steel AISI 316
9	Lower lever	stainless steel AISI 303	stainless steel AISI 316
10	Nozzle gasket	silicone	
11	Float	stainless steel AISI 304	stainless steel AISI 316
12	Nut	stainless steel AISI 304	stainless steel AISI 316
13	Screw	stainless steel AISI 304	stainless steel AISI 316
14	Ball valve (on request)	nickel-plated brass	stainless steel AISI 316
15	Flange (on request)	ductile cast iron GJS 450-10	painted steel/AISI304/316

The list of materials and components is subject to changes without notice.

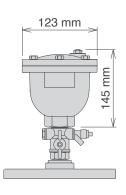
Working conditions

Treated water max. 60°C. Higher temperature on request. Max. pressure 40 bar; Min. pressure 0,1 bar.


Standard

Designed in compliance with EN-1074/4.

Standard connection 1", flanged on request. Flanges according to EN 1092/2. Epoxy painting applied through fluidized bed technology blue RAL 5005.


Changes and variations on the flanges and painting details available on request.

Air flow performance chart

AIR RELEASE DURING WORKING CONDITIONS

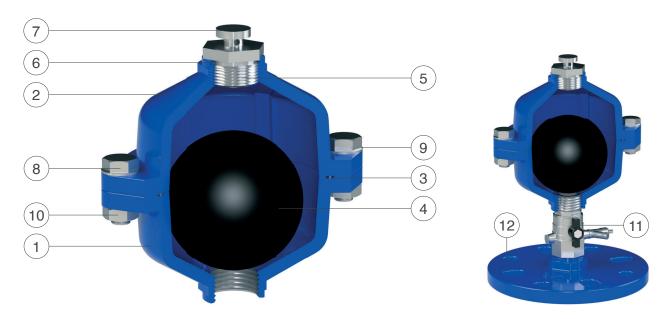
The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nl/s using a safety factor.

Air release valve Mod. EOLO

The CSA automatic air valve Eolo will ensure the proper operation of the system allowing the release of air pockets accumulating during working conditions.

Technical features and benefits

- Upper and lower bodies in ductile cast iron PN 25 rated.
- Float in stainless steel AISI 304 covered with vulcanized NBR or EPDM.
- Air release system in stainless steel AISI 303 or 316.
- Nuts and bolts in stainless steel AISI 304 or 316.
- Simple and compact.


Applications

- Water distribution systems.
- Irrigation, cooling systems.
- Buildings.
- In general where the air release function is necessary.

Note to the engineer

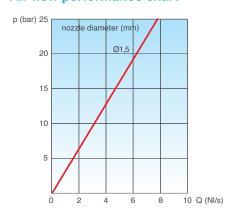
The air valve is supplied with 1" threaded female connection, on request provided with ball valve and flange.

N.	Component	Standard material	Optional
1	Lower body	ductile cast iron GJS 450-10	
2	Upper body	ductile cast iron GJS 450-10	
3	O-ring	NBR	EPDM/Viton/silicone
4	Float	NBR/EPDM coated stainless steel AISI 304	
5	Nozzle	stainless steel AISI 303	stainless steel AISI 316
6	O-ring	NBR	EPDM/Viton/silicone
7	Nozzle tap	stainless steel AISI 303	stainless steel AISI 316
8	Screws	stainless steel AISI 304	stainless steel AISI 316
9	Washers	stainless steel AISI 304	stainless steel AISI 316
10	Nuts	stainless steel AISI 304	stainless steel AISI 316
11	Ball valve (on request)	nickel-plated brass	stainless steel AISI 316
12	Flange (on request)	ductile cast iron GJS 450-10	painted steel/AISI304/316

The list of materials and components is subject to changes without notice.

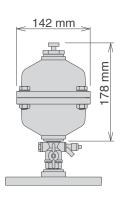
Working conditions

Treated water max. 60°C. Higher temperatures on request. Max. pressure 25 bar. Min. pressure 0,1 bar.


Standard

Designed in compliance with EN-1074/4.

Standard connection 1" BSP, flanged on request. Flanges according to EN 1092/2. Epoxy painting applied through fluidized bed technology blue RAL 5005.


Changes and variations on the flanges and painting details available on request.

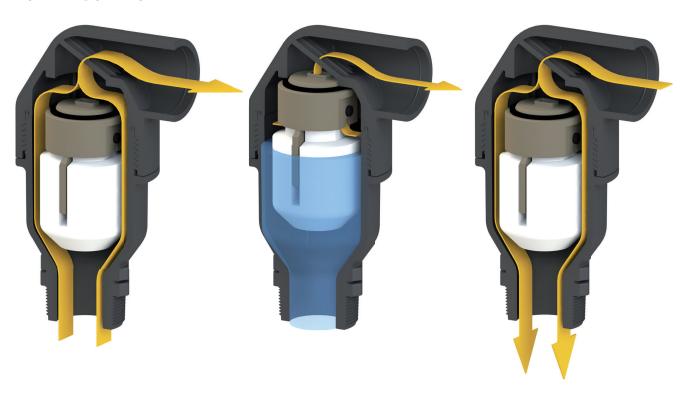
Air flow performance chart

AIR RELEASE DURING WORKING CONDITIONS

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nl/s using a safety factor.

Combination air valve Mod. ARGO

The CSA combination, triple function, automatic air valve Mod. ARGO, for irrigation and treated water applications, will ensure the proper operation allowing the release of air pockets during working conditions and the evacuation and entrance of large volumes of air during filling and draining operations.


Technical features and benefits

- Single chamber body PN 16 bar rated, provided with internal ribs for accurate guiding of the float.
- The aerodynamic full bore body prevents premature closures of the mobile block also at high velocity air intake and discharge.
- Available with bias kits for air discharge only (EO), entrance only (IO) and anti-shock (AS) feature.
- Available version with rapid filling prevention mechanism RFP.
- Drainage valve for chamber control and pressure relief during maintenance available on request.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Compact and reliable structure whose parts are fully corrosion, chemical resistant. Lower maintenance.
- Designed in compliance with EN 1074/4 standard.
- Approved for potable water use.
- Factory approval and quality control following ISO 9001:2008.

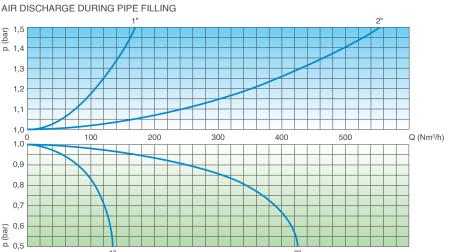
- Main irrigation networks.
- Water distribution networks.
- Cooling systems, process and industrial plants.
- In general this model is used on changes in slope and at the high points of the pipeline.

Operating principle - ARGO 3F

Discharge of large volumes of air

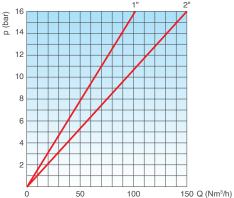
During the pipe filling it is necessary to discharge air as water flows in. The air valve ARGO 3F, thanks to the aerodynamic full port body and float, will make sure to avoid premature closures of the mobile block during this phase.

Air release during working conditions


During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the automatic orifice.

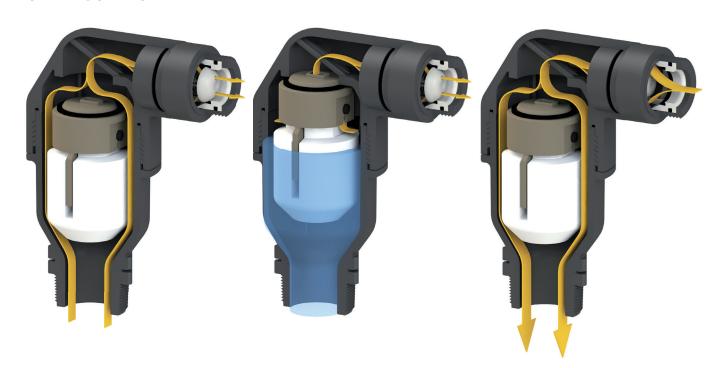
Entrance of large volumes of air

During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.


Technical data - ARGO 3F

Air flow performance charts

AIR ENTRANCE DURING PIPE DRAINING


AIR RELEASE DURING WORKING CONDITIONS

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nm³/h using a safety factor.

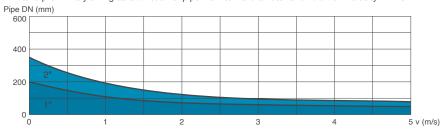
Operating principle - ARGO 3F AS

Controlled air discharge

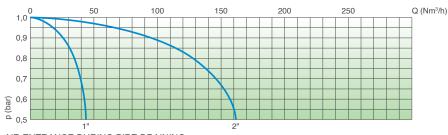
During the air discharge it is necessary to avoid rapid closures of the float, responsible of water hammer effects. The anti-shock device will control the air outflow reducing the velocity of the approaching water column and minimizing the risk of overpressure.

Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the automatic orifice.

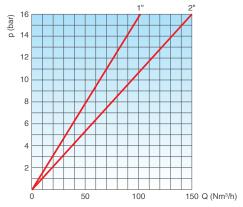

Entrance of large volumes of air

During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.


Technical data - ARGO 3F AS

Air valve selection chart

Air valve preliminary sizing as a function of pipeline internal diameter and fluid flow velocity in m/s.



Air flow performance charts

AIR ENTRANCE DURING PIPE DRAINING

AIR RELEASE DURING WORKING CONDITIONS

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nm3/h using a safety factor.

AS/IO device in polypropylene with threaded connection 2".

EO device in polypropylene with threaded connection 2".

N.	Component	Material	Features
1	Body	glass reinforced polypropylene	provided with ribs for accurate guiding
2	Cap	glass reinforced polypropylene	provided with protection grid
3	Float	polypropylene	solid and resistant to high pressure
4	Kinetic plug	glass reinforced polyamide	with high air release capacity
5	Kinetic orifice seal	EPDM	
6	Automatic orifice seal	EPDM	
7	O-ring	EPDM	

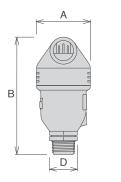
The list of materials and components is subject to changes without notice.

Working conditions

Treated water max. 60°C. Max. pressure 16 bar. Min. pressure 0,2 bar; lower on request.

Valve selection

Body material: glass-reinforced PP. Inlet size: DN 25, DN 50 (1", 2"). Connections: threaded male BSPT or NPT. Certified in compliance with EN-1074/4.


Nozzle specification

air valve	kinetic orifice		autom. or.
size	d (mm) A (mm²)		A (mm²)
1"	21	346	5
2"	45	1590	12

Weights and dimensions

CONNECTION (E) inch	A mm	B mm	C mm	D mm	Weight Kg
Threaded 1"	80	167	92	CH 41	0,3
Threaded 2"	110	226	135	CH 65	0,75

All values are approximate, consult CSA service for more details.

Anti-surge combination air valve Mod. ARGO 3F - RFP

The CSA surge dampening, anti-slam automatic air valve Mod. ARGO 3F RFP has been designed to allow the release of air pockets accumulated in working conditions, the entrance of large volumes of air in case of pipe draining or bursts and to prevent pipeline damages coming from pressure transients, associated with high air outflow velocities.

Technical features and benefits

- Uncontrolled pipeline filling operations and transient events will inevitably generate the rapid closure of the air valves installed along the system, with consequent damages. The CSA air valve ARGO 3F RFP, thanks to the additional anti-surge obturator, will automatically adjust the outflow capacity, thus reducing the velocity of the incoming water column minimizing the risk of water hammer.
- The spray effect during closing and the risk of drowning minimized.
- Single chamber body PN 16 bar rated, provided with internal ribs for accurate guiding of the float.
- Available kits with threaded outlet connection and for air discharge only (EO).
- Drainage valve for chamber control and pressure relief during maintenance available on request.
- Maintenance can be easily performed from the top, without removing the air valve from the pipe.
- Compact and reliable structure whose parts are fully corrosion, chemical resistant. Lower maintenance.
- Designed in compliance with EN 1074/4 standard.
- Approved for potable water use.
- Factory approval and quality control following ISO 9001:2008.

- Water distribution networks.
- Cooling systems, process and industrial plants.
- In general this model is used, in combination with CSA AS technology, on changes in slope and high points of the profile to provide the best air management and control with effective surge protection.

Operating principle

Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The ARGO 3F RFP, thanks to the aerodynamic body and float, will make sure to avoid premature closures of the mobile block during this phase.

Controlled outflow

If the differential pressure of air, during pipe filling, increases above a certain value without control there is the risk of water hammer and damages to the system. Should that happen the RFP upper float will rise automatically, reducing the outflow and consequently the velocity of the approaching water column.

Air release during working conditions

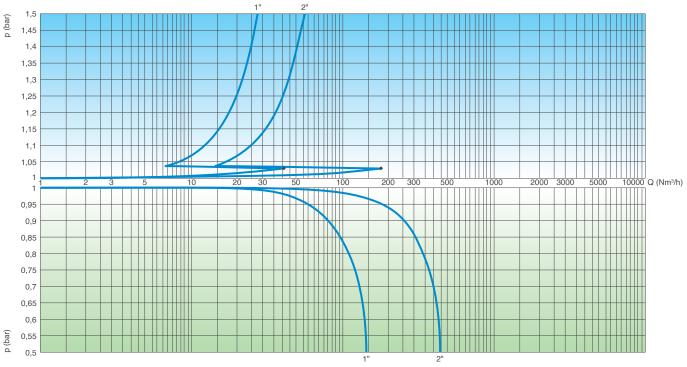
During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release through the nozzle.

Entrance of large volumes of air

During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Optional

• Version for air discharge only EO series. The most important application of EO is to allow the air valve installation in those locations of the system where HGL may drop below the pipe profile, and to any other node where for project requirements air entrance must be avoided, such as in pump suction lines or siphons pipelines.


• Optional fitting with threaded outlet to allow the connection to external pipes to convey possible spurts generated during operation cycles.

Technical data

Air flow performance charts

AIR DISCHARGE DURING PIPE FILLING

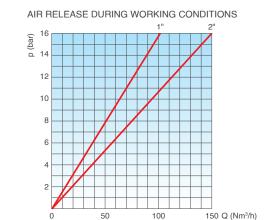
AIR ENTRANCE DURING PIPE DRAINING

The air flow charts were created in Kg/s from laboratory tests and numerical analysis, then converted in Nm³/h using a safety factor.

Working conditions

Treated water max. 60°C.

Max. pressure 16 bar.

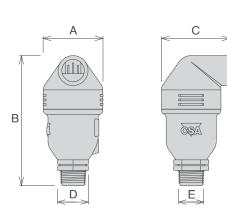

Min. pressure 0,2 bar; lower on request.

Valve selection

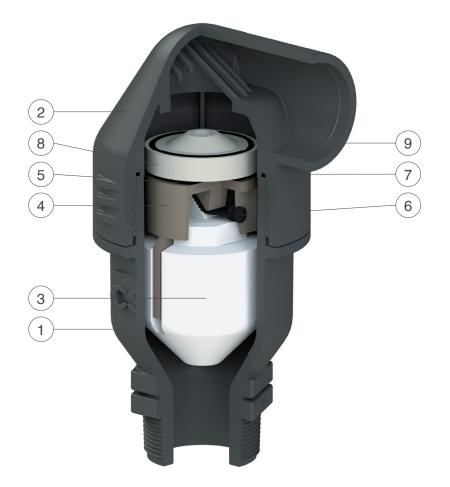
Body material: glass-reinforced PP.

Inlet size: DN 25, DN 50 (1", 2").

Connections: threaded male BSPT or NPT. Certified in compliance with EN-1074/4.


Nozzle specification

air valve	kinetic	autom. or.	
size	d (mm) A (mm²)		A (mm ²)
1"	21	346	5
2"	45	1590	12


Weights and dimensions

CONNECTION (E) inch	A mm	B mm	C mm	D mm	Weight Kg
Threaded 1"	80	167	92	CH 41	0,3
Threaded 2"	110	226	135	CH 65	0,75

All values are approximate, consult CSA service for more details.

Fitting with threaded outlet connection in polypropylene.

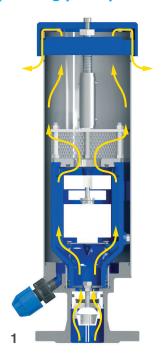
EO device in polypropylene with threaded connection.

N.	Component	Material	Features
1	Body	glass reinforced polypropylene	provided with ribs for accurate guiding
2	Cap	glass reinforced polypropylene	provided with protection grid
3	Float	polypropylene	solid and resistant to high pressure
4	Kinetic plug	glass reinforced polyamide	with high air release capacity
5	Kinetic orifice seal	EPDM	
6	Automatic orifice seal	EPDM	
7	O-ring	EPDM	
8	RFP flat	polypropylene	
9	O-ring	EPDM	

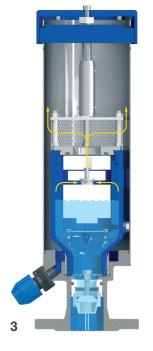
The list of materials and components is subject to changes without notice.

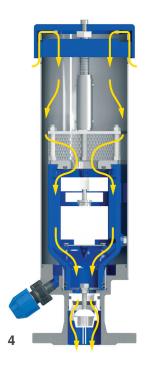
Anti-surge water combination underground air valve - Mod. SATURNO 3F - RFP

The SATURNO underground air valve has been designed to provide the proper solution for those locations requiring cost saving, frost protection, installation under roads, pavements, buildings. The air valve will ensure the operation of the pipeline networks allowing the release of air pockets during working conditions, the entrance of large volumes of air during draining operations and the controlled air discharge to avoid water hammer events.


Technical features and benefits


- SATURNO is designed to provide an alternative solution to conventional air valves installations avoiding chambers, structures, pits and sectioning devices between the air valve and the pipeline.
- Built in check valve for integral shut-off system when removing the air valve for maintenance purposes.
- Stand pipe in stainless steel for the maximum resistance against corrosion and to support the upper maneuvering system.
- Flanged basement to house the check valve and the drain port needed to avoid the accumulation of water inside the standpipe.
- Surge prevention combination air valve FOX 3F RFP automatically operated by the flow medium, and moving through the upper maneuvering system into a guidance bush with two O-rings for water tightness.
- Maintenance can be carried out from the top extracting the air valve from the standpipe.


- At high points and changes in slope of water distribution networks.
- Pressurized system with treated water.
- In areas exposed to frost, under the roads, buildings.



Operating principle

1. Discharge of large volumes of air

During the pipe filling it is necessary to discharge air as water flows in. The air valve, thanks to the aerodynamic body and deflector, will make sure to avoid premature closures of the mobile block during this phase.

3. Air release during working conditions

During operation the air produced by the pipeline is accumulated in the upper part of the air valve. Little by little it is compressed and the pressure arrives to water pressure, therefore its volume increases pushing the water level downwards allowing the air release.

2. Controlled outflow

If the differential pressure of air, during pipe filling, increases above a certain value without control there is the risk of water hammer and damages to the system. Should that happen the RFP upper float will rise automatically, reducing the outflow and consequently the velocity of the approaching water column.

4. Entrance of large volumes of air

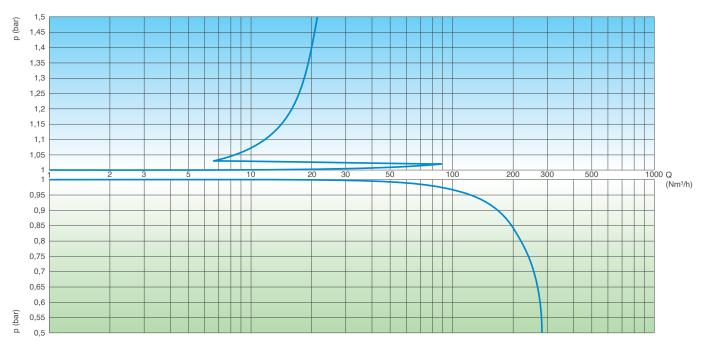
During pipeline draining, or pipe bursts, it is necessary to bring in as much air as the quantity of outflowing water to avoid negative pressure and serious damages to the pipeline, and to the entire system.

Installation

The installation of SATURNO simply requires a derivation from the main pipe, a manhole on top to allow for maintenance operations. The picture depicts the proper installation where the drain port plays a fundamental role, allowing for water discharge from the stand pipe. The drain should be located on a layer of gravel or crushed rock.

Air valve removal

The design of the underground air valve SATURNO allows for a maintenance and replacement, without removing the air valve from the pipe, simply by acting on the cap and maneuvering key from above as shown on the picture on the right. All components will be pulled out from the top without the need of digging, and additional costs.



Technical data

Air flow performance charts

AIR DISCHARGE DURING PIPE FILLING

AIR ENTRANCE DURING PIPE DRAINING

The air flow charts were created in Kg/s from laboratory tests and numerical analysis without the screen, then converted in Nm³/h using a safety factor.

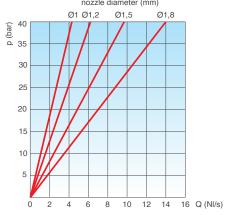
Working conditions

Treated water max. 60° C.

Higher temperatures on request.

Maximum pressure 16 bar;

Minimum pressure 0,2 bar. Lower on request.

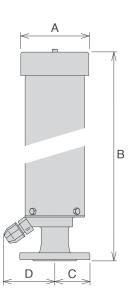

Standard

Designed in compliance with EN-1074/4.

Flanges according to EN 1092/2.

Epoxy painting applied through fluidized bed technology blue RAL 5005.

Changes and variations on the flanges and painting details on request.

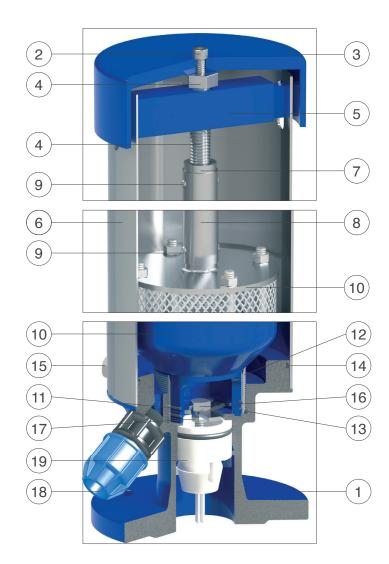


AIR RELEASE DURING WORKING CONDITIONS

Weights and dimensions

DN mm	A mm	B mm	C mm	D mm	Weight Kg
	160	750	82,5	120	20,5
50	160	1000	82,5	120	23,2
30	160	1250	82,5	120	25,3
	160	1500	82,5	120	28,6
	160	750	100	120	22,0
80	160	1000	100	120	24,7
60	160	1250	100	120	26,8
	160	1500	100	120	30,1

All values are approximate, consult CSA service for more details.


Nozzle choice

Nozzle diameter in mm according to the PN of the air valve.

PN 10	PN 16	PN 25	PN 40
1,5	1,2	1	0,8

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 450-10	
2	Screw	stainless steel AISI 304	stainless steel AISI 316
3	Сар	painted aluminium S11	
4	Driving screw	stainless steel AISI 304	
5	Guiding plate	painted steel	
6	Stand pipe	stainless steel AISI 304	
7	Screw housing	stainless steel AISI 303	
8	Maneuvering pipe	stainless steel AISI 304	
9	Plug	stainless steel AISI 304	
10	FOX 2"	in different executions (see FOX technical details)	
11	O-ring	NBR	EPDM/Viton/silicone
12	Threaded sleeve	stainless steel AISI 304	
13	O-ring	NBR	EPDM/Viton/silicone
14	O-ring	NBR	EPDM/Viton/silicone
15	Screws	stainless steel AISI 304	stainless steel AISI 316
16	Opening screw	stainless steel AISI 304	stainless steel AISI 316
17	Locking nut	stainless steel AISI 304	stainless steel AISI 316
18	Drainage	polypropylene	
19	Check valve	Delrin (polyoxymethylene)	

Advanced testing facilities

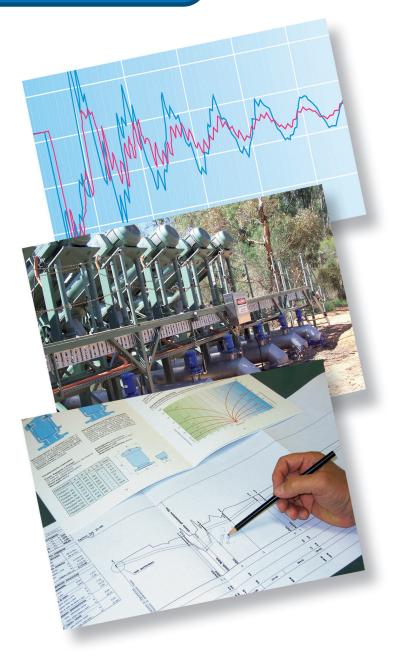
Designed to reproduce real conditions of modern water distribution systems the CSA testing facility is able to assess the dynamic performances of automatic control valves, direct acting pressure control valves, air valves and anti water hammer valves.

Provided with a high capacity booster pumps station, and linked to an advanced high frequency pressure transducers and flow meters, the testing rig allows for a real time visualization of pressure and flow evolutions. Water hammer events can also be simulated and recorded to prove the efficacy of CSA fast acting relief valve, in addition to level control for which, using an auxiliary stilling tank, a part of the pipeline system is entirely dedicated.

The PLC and control station allows for the operation of step by step and solenoid operated valves to determine the sensitivity of such kind of application and pressure management solutions. Thanks to this important and powerful tool valves can be customized, simulated and set according to the project requirements assuring the perfect performance and accuracy.

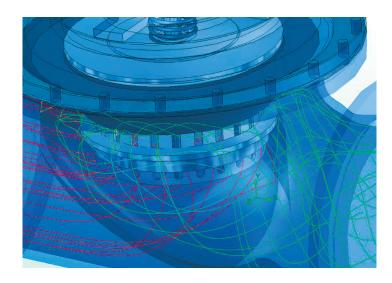
The testing process

All our valves undergo severe tests according to EN standards to ensure they are mechanically resistant, watertight, and high performing. After testing every valve is identified by means of a metallic tag or sticker, and duly registered and certified.


CSA HYCONSULT

Water hammer analysis CSA Hyconsult

CSA Hyconsult was founded to provide designers and consultants, involved in the design of water distribution and sewage systems, with accurate and unique technical support.


CSA Hyconsult has specialized in hydraulic modelling and transients analysis, entirely through the use of modern computational tools and advanced algorithms. Simulations are essential to predict system responses to events under a wide range of conditions without disrupting the actual system.

Using simulations, problems can be anticipated in possible or existing situations, and solutions can be evaluated in order to invest time, money and material in the most productive manner.

Research and innovation

CSA has always regarded knowledge as being indispensable for the kind of research that consistently feeds innovation at all levels. The R&D department at CSA constantly strives to improve product performance and continually searches for new solutions to meet our customer's needs. Twenty years of experience in valve design and sizing, supported by advanced computational tools, cooperation with external entities at the highest level, and test facilities for the verification of theoretical results which are available for our customers, guarantee our professionalism and reliability.

