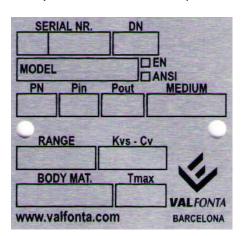


INSTRUCTIONS: OPERATION AND INSTALLATION PRESSURE REDUCING VALVE MODEL VD

VALFONTA

ÍNDICE		PÁGINA
1	IDENTIFICATION PLATE LEGEND	3
2	MAIN FEATURES	5
3	OPERATION	5
4	SCHEME	7
5	INSTALLATION	9
6	POSSIBLE TROUBLESHOOTING	11
7	INSTALLATION SCHEME	12
8	DISMANTLING AND ASSEMBLING	13
9	RECEIPT ON SITE	14



1. IDENTIFICATION PLATE LEGEND

A) CE marked is required in accordance with PED 2014/68/UE

B) CE marked is NOT required in accordance with PED 2014/68/UE

SERIAL N. VALVE IDENTIFICATION NUMBER. VALFONTA WILL NEEDS THIS NUMBER FOR SPARE PARTS

OR COMMENTS RESPECT OF THIS VALVE.

MOD. VALVE MODEL

DN VALVE NOMINAL DIAMETER

PN VALVE NOMINAL PRESSURE

MEDIUM FLUID

P.IN INLET PRESSURE

P.OUT OUTLET PRESSURE

BODY BODY MATERIAL

KVS. KV VALVE

ATEX marked required according to DIRECTIVE 94/9/EC

VALFONTA E 08915 – Badalona (ESPAÑA)

TYPE: PRESSURE REDUCING VALVES SELF - ACTUATED

MANUFACTURING YEAR: MANUFACTURING NUMBER:

II 2 G D

c IIC Tx c IIIC Tx^oC

TECHNICAL FILE IN CUSTODY: LOM CERTIFICATION NUMBER: LOM 14.034 U

Reference Denomination		
II 2	ATEX category, zones 1 & 21	
G	Class I application (flammable liquids and gases)	
D	Class II application (combustible dust)	
c IIC	Safety construction protection mode for substances IIC	
C IIIC	Safety construction protection mode for substances IIIC	
Tx / TxºC	Tx / Tx°C Thermal class according fluid temp. used	
LOM	Number of certification from ExNB (LOM)	

SELF-OPERATED PRESSURE REGULATORS PRESSURE REDUCING VALVE MODEL VD

INSTRUCTIONS: OPERATION AND INSTALLATION

2. MAIN FEATURES

Self-operated pressure reducing valve built with piston and specially designed to maintain constant outlet pressure. This is achieved by way of a regulation piston which levels itself out until a precise balance of pressure is obtained.

Piston guided through 3 points.

Easy and very low maintenance.

Extremely hard baked enamel

Pressure range from 1,5 to 16 barg (Standard from 1,5 – 8 barg)

Maximum admitted pressure 40 barg

Maximum admitted temperature 80 °C (NBR collars) (Optionally, EPDM 125°c and VITON 150°C)

Fluids

Liquids, compressed air, gases.

Connections

Flanged DIN PN16 - PN40 Flanged ANSI Class 150 and 300 Lb. Threaded, BSP and NPT female, up to 2"

Body material \rightarrow Nodular Iron GGG40.3, Bronze, Carbon steel GSC25N and Stainless steel AISI 316 (CF8M).

Trim material Stainless steel Aisi 316 (optionally Bronze).

Applications

Chemical laboratory installations, waters distribution systems, installation of waste water, industrial, compressed air, sprinkler systems, fuel-oil,...

Characteristics

It is easy to adjust; it does not need any maintenance. Its internal design is conceived to provide an effective circulation of the fluid.

3. OPERATING

The "VALFONTA VD" pressure reduction valve work by means of the principal of direct action. The pressure of upward flowing water arrives at the valve and pushes the bush (3) upwards. Once closed, the valve must turn the regulation screw (13) in a clockwise direction. This causes the displacement of the spring (10) which itself acts upon the bush (3) and the gasket (2-3-4), opening up the valve until the desired downward pressure is reached. Any variation in pressure of the upward flowing water will be absorbed by the valve by the way of the compensation of the two sections of the bush, joined together by the compensation hole.

To increase outlet pressure, the regulating screw (13) should be turned clockwise.

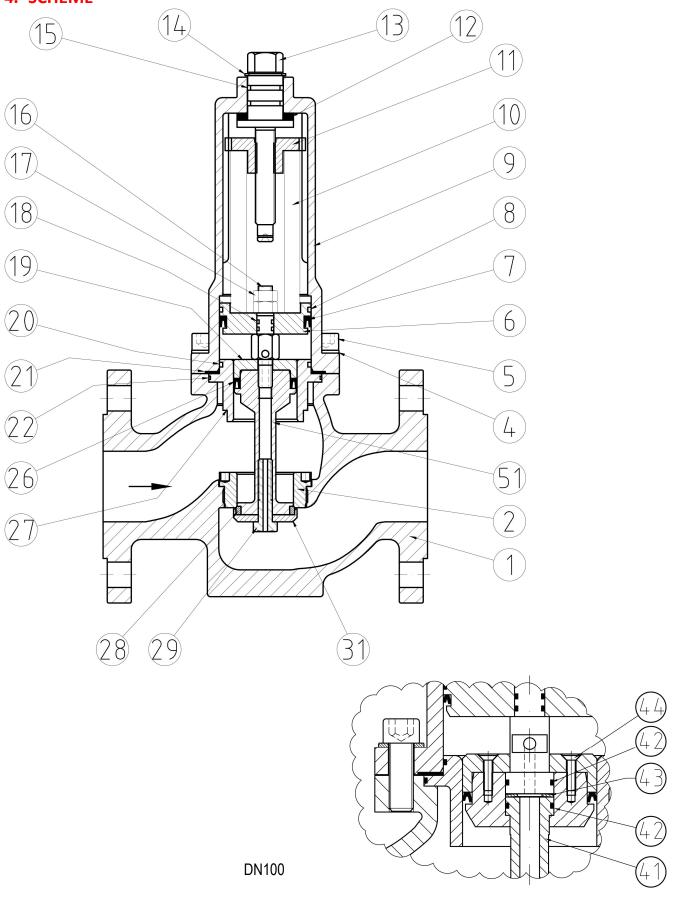
Special ATEX instructions

- No limitation of use due to the ATEX substance.
- Limitations due to thermal class:

Class I (flammable liquids and gases)

TEMPERATURE CLASS	MAX. SURFACE TEMPERATURE	APPROPRIATE FOR SUBSTANCES WITH IGNITION TEMPERATURE
T1	450°C	Ti >450°C
T2	300°C	Ti >300°C
T3	200°C	Ti >200°C
T4	135°C	Ti >135°C
T5	100°C	Ti >100°C
T6	85°C	Ti >85°C

- Class II (combustible dust)


$$T(x) \le 2/3 MIT_{cloud}$$

$$T(x) \le 5 \text{ mm MIT}_{layer} - 75 \text{ K}$$

	Description	Material		Description	Material
1	Body	Stainless steel CF8M-316 Bronze RG10 Carbon steel WCB Nodular Iron GGG40.3	18	O-ring	NBR
2	Seat	1.4404 - SS 316L	19	Lower bushing	1.4404 - SS316L
3	Stem (DN65-100)	1.4404 - SS316L	20	O-ring	NBR
4	Washer	Stainless steel A2-70	21	Flat Gasket	PTFE
5	Bolts	Stainless steel A2-70	22	O-ring	NBR
6	Upper bushing	1.4404 - SS316L or 1.4307 - SS304L	26	Balanced gasket	NBR Graphited PTFE + St. steel
7	Gasket	NBR	27	Lower bushing guide	1.4404 - SS316L
8	O-ring	NBR	28	Seal	NBR Graphited PTFE
9	Spring cover	Stainless steel CF8M-316	29	Screw	Stainless steel A2-70
10	Spring	Steel spring	30	Guide seal	1.4404 - SS316L
11	Regulation nut	Steel 1.1191	31	Support seal	1.4404 - SS316L
12	Ball bearing	1.3505 (Bearing steel 100 Cr 6)			
13	Regulation stem	1.4404 - SS316L	41	Stem (DN100)	Stainless steel Aisi 316L
14	Safety reg. stem washer	Stainless steel A2-70	42	O-ring (DN100)	NBR
15	Block Pin	Stainless steel A2-70	43	Washer spring(DN100)	Stainless steel Aisi 316L
16	Bushing stem	1.4404 - SS316L	44	Screw	Stainless steel A2-70
17	Nut(s)	Stainless steel A2-70	51	Stem (DN15-50)	1.4404 - SS 316L
				Recommended spare pa	rts

RECOMMENDED SPARE PARTS

Reference	Description	Item
VD.SP1	Gaskets + seal	3, 6a, 15a, 17, 19 y 20
VD.SP2	Spring	10

This device must be installed by specialized personnel with knowledge and experience.

They must know about the current regulations in order to judge the risks that may involve this work.

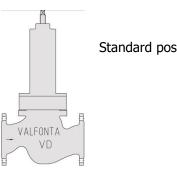
Important: Be sure that the valve never exceeds the service temperature for which has been designed.

5. ASSEMBLY

The pipe must be cleaned carefully before installing the valve, to prevent that any small element or impurity may affect the reducing valve work.

It is also very important to install a strainer in front of the valve in order to protect it.

Reducing valve must be installed in a horizontal pipe and the direction of the flow should be in the same direction that shows the valve body.


The supports holding the valve will be done in the pipe and as close as possible to the flanges but never fixed in the valve or the actuator, to eliminate unnecessary tensions.

Installation in by-pass

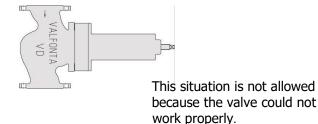
If you install a valve in bypass, which is highly recommended, it must spliced back to the main pipe after the control line, and with their check valves, according to the scheme:

(see drawing page 12)

Assembly position

Standard position

Permitted position


Start-up

Open the check valves slowly (to prevent water hammer).

To adjust the set pressure (downstream pressure), turn the regulating screw.

Compressing the spring (clockwise) increases the outlet pressure.

Decompressing the spring (anticlockwise) decreases the outlet pressure.

Technical Data

Nominal pressure	PN16-PN25-PN40 o CLASE 150-CLASE 300		
Nominal size	DN15 to DN50	DN65 to DN80	DN100
Max. permissible differential pressure Δp	25 bar	20 bar	16 bar
Max. permissible temperature: body	See technical sheet HT-101		
		NBR 80°C	
Max. permissible temperature: body	EPDM 125°C		
	VITON 150°C		

ATEX requirements

- <u>IMPORTANT!</u> The respective national regulations as well as general engineering rules governing the installation and operation of equipment in explosive atmospheres must be observed.
- The valves are ATEX category "II 2 GD" according to 100a ATEX Directive (94/9/EC).
- <u>IMPORTANT!</u> The device can only be used in potentially explosive locations Class I (gases, vapors or liquids) Zones 1 and 2 and Class II (combustible dusts) areas 21 and 22, according to the specifications in the Directive 1999/92/EC, as well as the Electro technical Regulations.

Electrostatic discharges

Under certain conditions, electrostatic discharges that are capable of ignite explosive atmospheres, can be produced. The most important measure of protection is equipotential bonding of all conductive parts and earthing.

In order to avoid electrostatics discharges, the installation of devices and control elements must be earthing.

- IMPORTANT! Connecting the valves to process: it should be ensured electrical continuity of <10⁶Ω.
- <u>IMPORTANT!</u> National regulations on maintenance, service, inspection and repair of apparatus and equipment for explosive atmospheres, as well as general engineering rules must be observed.

COMMISSIONING

IMPORTANT! User is the only responsible for a safe use of the devices.

In use, parts that affect the explosion protection of the valves must be checked and act accordingly, f.e.:

- Fixing Elements -screws, nuts, shafts, etc.- see technical documentation of the product supplied. It must be ensure its tightening, proper operation and / or change when necessary. After 2.500h of working or 6 natural months (whichever comes first).
- The seals will be replaced by original spare parts: every 25,000 hours or when periodic inspections result said (the lower range).
- Any other action arising from inspection and maintenance plan, set by the user
- **IMPORTANT!** If repainting the valves and / or spare parts, ensure there is no paint on moving parts, mounting flange and closure sealing.

INSPECTIONS

- <u>IMPORTANT!</u> National Regulations must be observed. It is user's responsibility to establish an inspection and maintenance plan for these devices in order to ensure their proper use.
- Inspections must be performed by "qualified staff" because of the kind of equipment and / or installation.
- Purposes can be used to guide the requirements of the UNE-EN 60079-17, in order to establish the inspection plan.

- 10 -

- IMPORTANT! When inspections are "Detailed" or it is degree is "Close", the devices will be completely shut out.

MAINTENANCE

Spare parts are subject to normal wear. They must be inspected and replaced when necessary.

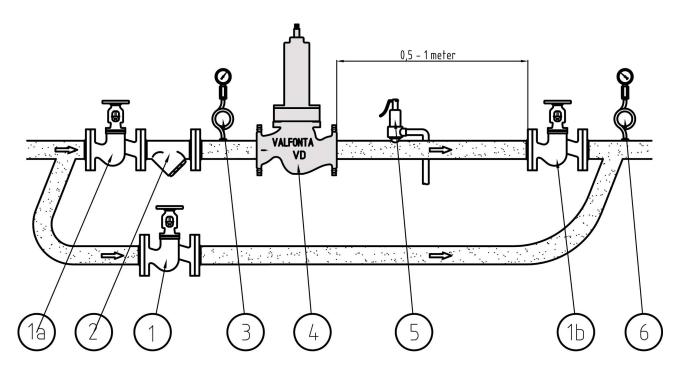
The frequency of the inspections and maintenance depends on the severity of the service conditions. This section provides instructions about replacement, packing, stem, plug and seat.

All maintenance operations can be performed with the valve body installed.

Before any maintenance, ensure the valve is depressurised and clear of media, and isolate it both upstream and downstream. Be sure the temperature isn't dangerous.

IMPORTANT! Use only genuine parts or recommended by VALFONTA, SL

6. POSSIBLE TROUBLESHOOTING


Trouble	Possible reasons	Recommended response	
Pressure exceeds the adjusted set point	Seat and plug worn down	Disassemble the regulator and replace damaged parts	
Pressure drops	Valve installed against the flow; see arrow on body	Check direction of flow. Install valve correctly	
below the	Valve or KVS coefficient too small	Check valve sizing. Install larger valve, if necessary	
adjusted set point	Foreign particles blocking the plug	Disassemble the regulator and replace damaged parts	
Control disorders	Particles between seat and plug	Remove foreign particles. Replace damaged parts	
Upstream pressure fluctuates	Valve too large	Check valve sizing. Select smaller KVS coefficient, if necessary	
Loud noises	High flow velocity, cavitation	Check sizing. Install flow divider with gases	

- 11 -

7. INSTALLATION DRAWING

Installation is recommended according to the following drawing:

- 1, 1a y 1b \rightarrow Isolation globe valves
- $2 \to Filter$
- 3 → Inlet pressure
- $4 \rightarrow$ Pressure reducing valve VD
- $5 \rightarrow \text{Safety valve}$
- 6 → Outlet pressure

Dimensions, weight and Kv value 20 25 32 40 50 65 100 DN **15** 80 Κv 3.5 5 9 13.5 22 32 57 82 115 (m³/h) 10.4 Cv 4 5.8 15.6 25 37 66 95 134 (gpm) A DIN 130 150 160 180 200 230 290 310 350 (mm) 276 184 222 254 298.5 352.5 A ANSI150 (mm) 0 7,25" 8,75" 10" 10.9" 11,75" 13,88" (inches) 197 292 235 267 317.5 368 A ANSI300 (mm) 0 7,76" 9,25" 10,51" 11,5" 12,50" 14,49" (inches 240 240 250 250 300 300 415 430 490 (mm) Weight (kg.) 10 10 12 13 16 18 50 60 Available under request

8. DISMANTLING AND ASSEMBLING

- a. Unscrew completely the adjusting screw (13) to loosen the spring.
- b. Ensure that there is no pressure in the pipe line and the temperature of valve and pipe is ambient.
- c. Dismount the valve form main line.
- d. Unscrew bolts (5).
- e. Remove spring cover carefully (9) and retire the spring (10).
- f. With a tool, fix the seal screw (29), and unscrew nuts (17).
- g. Remove the upper bushing (6) and replace the gaskets if necessary.
- h. Remove the lower bushing guide (27) and replace the gaskets if necessary.
- i. With a special tool (request a Valfonta for a drawing), unscrew the seat (2) and rest of the parts. Replace gaskets if necessary.
- j. In a workbench replace seat (28) and compensating gasket (26) if necessary.
- k. Check the seal to assure is not damaged.
- I. Clean and reassembly.

- 13 -

9. RECEIPT ON SITE

ATENTION! Transport and storage of these devices should be in their original packaging.

RECEIPT ONSITE

When receiving the equipment on site, it should be unpacked to check that they agree with the request and delivery notes. At least, verification shall be performed:

- Visual,
- Mechanical

After these checks, if it will not be installed immediately, it will keep in dry and protected atmosphere.

Visual Inspection

Check that during transport, unloading and installation, the devices have not been damaged.

Mechanical Verification

Check all moving parts of the apparatus, as well as screws and other elements fulfill their mission.

<u>IMPORTANT!</u> If is observed abnormality during these guidelines reception, contact urgently VALFONTA to clarify responsibilities and put the devices in correct status.

The contents of that document are subject to change without notice.

- 14 -